Levitation of delocalized states at weak magnetic field: critical exponents and phase diagram

We study numerically the form of the critical line in the disorder–magnetic field phase diagram of the p–q network model, constructed to study the levitation of extended states at weak magnetic fields. We use oneparameter scaling, keeping either q (related to magnetic field) or p (related to energ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Физика низких температур
Datum:2013
1. Verfasser: Kagalovsky, V.
Format: Artikel
Sprache:English
Veröffentlicht: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2013
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/118097
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Levitation of delocalized states at weak magnetic field: critical exponents and phase diagram / V. Kagalovsky // Физика низких температур. — 2013. — Т. 39, № 1. — С. 37–39. — Бібліогр.: 8 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-118097
record_format dspace
spelling Kagalovsky, V.
2017-05-28T16:56:58Z
2017-05-28T16:56:58Z
2013
Levitation of delocalized states at weak magnetic field: critical exponents and phase diagram / V. Kagalovsky // Физика низких температур. — 2013. — Т. 39, № 1. — С. 37–39. — Бібліогр.: 8 назв. — англ.
0132-6414
PACS: 72.15.Rn, 73.20.Fz, 73.43.–f
https://nasplib.isofts.kiev.ua/handle/123456789/118097
We study numerically the form of the critical line in the disorder–magnetic field phase diagram of the p–q network model, constructed to study the levitation of extended states at weak magnetic fields. We use oneparameter scaling, keeping either q (related to magnetic field) or p (related to energy) constant, to calculate two critical exponents, describing the divergence of the localization length in each case. The ratio of those two exponents defines the form of the critical line close to zero magnetic field.
This work was supported by the BSF under grant No. 2010030 and by the SCE under internal grant No. 5368911113.
en
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
Физика низких температур
XIX Уральская международная зимняя школа по физике полупроводников
Levitation of delocalized states at weak magnetic field: critical exponents and phase diagram
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Levitation of delocalized states at weak magnetic field: critical exponents and phase diagram
spellingShingle Levitation of delocalized states at weak magnetic field: critical exponents and phase diagram
Kagalovsky, V.
XIX Уральская международная зимняя школа по физике полупроводников
title_short Levitation of delocalized states at weak magnetic field: critical exponents and phase diagram
title_full Levitation of delocalized states at weak magnetic field: critical exponents and phase diagram
title_fullStr Levitation of delocalized states at weak magnetic field: critical exponents and phase diagram
title_full_unstemmed Levitation of delocalized states at weak magnetic field: critical exponents and phase diagram
title_sort levitation of delocalized states at weak magnetic field: critical exponents and phase diagram
author Kagalovsky, V.
author_facet Kagalovsky, V.
topic XIX Уральская международная зимняя школа по физике полупроводников
topic_facet XIX Уральская международная зимняя школа по физике полупроводников
publishDate 2013
language English
container_title Физика низких температур
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
format Article
description We study numerically the form of the critical line in the disorder–magnetic field phase diagram of the p–q network model, constructed to study the levitation of extended states at weak magnetic fields. We use oneparameter scaling, keeping either q (related to magnetic field) or p (related to energy) constant, to calculate two critical exponents, describing the divergence of the localization length in each case. The ratio of those two exponents defines the form of the critical line close to zero magnetic field.
issn 0132-6414
url https://nasplib.isofts.kiev.ua/handle/123456789/118097
citation_txt Levitation of delocalized states at weak magnetic field: critical exponents and phase diagram / V. Kagalovsky // Физика низких температур. — 2013. — Т. 39, № 1. — С. 37–39. — Бібліогр.: 8 назв. — англ.
work_keys_str_mv AT kagalovskyv levitationofdelocalizedstatesatweakmagneticfieldcriticalexponentsandphasediagram
first_indexed 2025-11-28T12:04:39Z
last_indexed 2025-11-28T12:04:39Z
_version_ 1850853732158275584