HgCdTe quantum wells grown by molecular beam epitaxy

CdxHg₁₋xTe-based (x = 0 – 0.25) quantum wells (QWs) of 8 – 22 nm in thickness were grown on (013) CdTe/ZnTe/GaAs substrates by molecular beam epitaxy. The composition and thickness (d) of wide-gap layers (spacers) were x ∼ 0.7 mol.frac. and d ∼ 35 nm, respectively, at both sides of the quantum we...

Full description

Saved in:
Bibliographic Details
Published in:Semiconductor Physics Quantum Electronics & Optoelectronics
Date:2007
Main Authors: Dvoretsky, S.A, Ikusov, D.G., Kvon, Z.D., Mikhailov, N.N., Remesnik, V.G., Smirnov, R.N., Sidorov, Yu.G., Shvets, V.A.
Format: Article
Language:English
Published: Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України 2007
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/118333
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:HgCdTe quantum wells grown by molecular beam epitaxy / S.A.Dvoretsky, D.G.Ikusov. Z.D.Kvon, N.N.Mikhailov, V.G.Remesnik, R.N.Smirnov, Yu.G.Sidorov, V.A.Shvets // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2007. — Т. 10, № 4. — С. 47-53. — Бібліогр.: 25 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:CdxHg₁₋xTe-based (x = 0 – 0.25) quantum wells (QWs) of 8 – 22 nm in thickness were grown on (013) CdTe/ZnTe/GaAs substrates by molecular beam epitaxy. The composition and thickness (d) of wide-gap layers (spacers) were x ∼ 0.7 mol.frac. and d ∼ 35 nm, respectively, at both sides of the quantum well. The thickness and composition of epilayers during the growth were controlled by ellipsometry in situ. It was shown that the accuracy of thickness and composition were ∆x = ± 0.002, ∆d = ± 0.5 nm. The central part of spacers (10 nm thick) was doped by indium up to a carrier concentration of ∼10¹⁵ cm⁻³ . A CdTe cap layer 40 nm in thickness was grown to protect QW. The compositions of the spacer and QWs were determined by measuring the Е₁ and Е₁+∆₁ peaks in reflection spectra using layer-by-layer chemical etching. The galvanomagnetic investigations (the range of magnetic fields was 0 – 13 T) of the grown QW showed the presence of a 2D electron gas in all the samples. The 2D electron mobility µe = (2.4 – 3.5)×10⁵ cm² /(V·s) for the concentrations N = (1.5 – 3)×10¹¹ cm⁻² (x < 0.11) that confirms a high quality of the grown QWs.
ISSN:1560-8034