Methods of cluster analysis in sensor engineering: advantages and faults

We consider the crisp and fuzzy partitioning techniques of cluster analysis bearing in mind their application for classification of data obtained with chemical sensor arrays. The advantage of the cluster analysis techniques is existence of a parameter S(i). This parameter gives quantitative effic...

Full description

Saved in:
Bibliographic Details
Published in:Semiconductor Physics Quantum Electronics & Optoelectronics
Date:2010
Main Authors: Burlachenko, Yu.V., Snopok, B.A.
Format: Article
Language:English
Published: Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України 2010
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/118565
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Methods of cluster analysis in sensor engineering: advantages and faults / Yu.V. Burlachenko, B.A. Snopok // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2010. — Т. 13, № 4. — С. 393-397. — Бібліогр.: 13 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-118565
record_format dspace
spelling Burlachenko, Yu.V.
Snopok, B.A.
2017-05-30T16:19:45Z
2017-05-30T16:19:45Z
2010
Methods of cluster analysis in sensor engineering: advantages and faults / Yu.V. Burlachenko, B.A. Snopok // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2010. — Т. 13, № 4. — С. 393-397. — Бібліогр.: 13 назв. — англ.
1560-8034
PACS 07.07.Df
https://nasplib.isofts.kiev.ua/handle/123456789/118565
We consider the crisp and fuzzy partitioning techniques of cluster analysis bearing in mind their application for classification of data obtained with chemical sensor arrays. The advantage of the cluster analysis techniques is existence of a parameter S(i). This parameter gives quantitative efficiency of classification and can be used as optimization criterion for sensor system as a whole as well as the measurement procedure. The crisp and fuzzy techniques give practically the same result when analyzing the data that cluster uniquely. It is shown that big value of the parameter S(i) is not sufficient for adequate data partitioning into cluster in more complicated cases, and the results of clusterization for the above techniques may diverge. In this case, one should apply both techniques concurrently, checking the correctness of partitioning into clusters against the principal component analysis.
This work got a financial support from the National Academy of Sciences of Ukraine.
en
Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України
Semiconductor Physics Quantum Electronics & Optoelectronics
Methods of cluster analysis in sensor engineering: advantages and faults
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Methods of cluster analysis in sensor engineering: advantages and faults
spellingShingle Methods of cluster analysis in sensor engineering: advantages and faults
Burlachenko, Yu.V.
Snopok, B.A.
title_short Methods of cluster analysis in sensor engineering: advantages and faults
title_full Methods of cluster analysis in sensor engineering: advantages and faults
title_fullStr Methods of cluster analysis in sensor engineering: advantages and faults
title_full_unstemmed Methods of cluster analysis in sensor engineering: advantages and faults
title_sort methods of cluster analysis in sensor engineering: advantages and faults
author Burlachenko, Yu.V.
Snopok, B.A.
author_facet Burlachenko, Yu.V.
Snopok, B.A.
publishDate 2010
language English
container_title Semiconductor Physics Quantum Electronics & Optoelectronics
publisher Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України
format Article
description We consider the crisp and fuzzy partitioning techniques of cluster analysis bearing in mind their application for classification of data obtained with chemical sensor arrays. The advantage of the cluster analysis techniques is existence of a parameter S(i). This parameter gives quantitative efficiency of classification and can be used as optimization criterion for sensor system as a whole as well as the measurement procedure. The crisp and fuzzy techniques give practically the same result when analyzing the data that cluster uniquely. It is shown that big value of the parameter S(i) is not sufficient for adequate data partitioning into cluster in more complicated cases, and the results of clusterization for the above techniques may diverge. In this case, one should apply both techniques concurrently, checking the correctness of partitioning into clusters against the principal component analysis.
issn 1560-8034
url https://nasplib.isofts.kiev.ua/handle/123456789/118565
citation_txt Methods of cluster analysis in sensor engineering: advantages and faults / Yu.V. Burlachenko, B.A. Snopok // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2010. — Т. 13, № 4. — С. 393-397. — Бібліогр.: 13 назв. — англ.
work_keys_str_mv AT burlachenkoyuv methodsofclusteranalysisinsensorengineeringadvantagesandfaults
AT snopokba methodsofclusteranalysisinsensorengineeringadvantagesandfaults
first_indexed 2025-11-28T12:05:05Z
last_indexed 2025-11-28T12:05:05Z
_version_ 1850853732063903744