Manifestation of the Upper Hubbard band in the 2D Hubbard model at low electron density

We consider the 2D Hubbard model in the strong-coupling case (U >> W) and at low electron density (nd² << 1). We find an antibound state as a pole in the two-particle T-matrix. The contribution of this pole in the self-energy reproduces a two-pole structure in the dressed one-particle Gr...

Full description

Saved in:
Bibliographic Details
Published in:Физика низких температур
Date:2011
Main Authors: Kagan, M.Yu., Val’kov, V.V., Woelfle, P.
Format: Article
Language:English
Published: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2011
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/118762
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Manifestation of the Upper Hubbard band in the 2D Hubbard model at low electron density / M.Yu. Kagan, V.V. Val’kov, P. Woelfle // Физика низких температур. — 2011. — Т. 37, № 9-10. — С. 1046–1052. — Бібліогр.: 16 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-118762
record_format dspace
spelling Kagan, M.Yu.
Val’kov, V.V.
Woelfle, P.
2017-05-31T06:58:39Z
2017-05-31T06:58:39Z
2011
Manifestation of the Upper Hubbard band in the 2D Hubbard model at low electron density / M.Yu. Kagan, V.V. Val’kov, P. Woelfle // Физика низких температур. — 2011. — Т. 37, № 9-10. — С. 1046–1052. — Бібліогр.: 16 назв. — англ.
0132-6414
PACS: 71.10.Fd
https://nasplib.isofts.kiev.ua/handle/123456789/118762
We consider the 2D Hubbard model in the strong-coupling case (U >> W) and at low electron density (nd² << 1). We find an antibound state as a pole in the two-particle T-matrix. The contribution of this pole in the self-energy reproduces a two-pole structure in the dressed one-particle Green-function similar to the Hubbard-I approximation. We also discuss briefly the Engelbrecht-Randeria mode which corresponds to the pairing of two holes below the bottom of the band for U >> W and low electron density. Both poles produce nontrivial corrections to Landau Fermi-liquid picture already at low electron density but do not destroy it in 2D.
We acknowledge helpful discussions with P.B. Wiegman, D. Vollhardt, P. Fulde, K.I. Kugel, and A.F. Barabanov. This work was supported by RFBR grants №11-02-00798 and 11-02-00741.
en
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
Физика низких температур
Низкоразмерные структуры
Manifestation of the Upper Hubbard band in the 2D Hubbard model at low electron density
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Manifestation of the Upper Hubbard band in the 2D Hubbard model at low electron density
spellingShingle Manifestation of the Upper Hubbard band in the 2D Hubbard model at low electron density
Kagan, M.Yu.
Val’kov, V.V.
Woelfle, P.
Низкоразмерные структуры
title_short Manifestation of the Upper Hubbard band in the 2D Hubbard model at low electron density
title_full Manifestation of the Upper Hubbard band in the 2D Hubbard model at low electron density
title_fullStr Manifestation of the Upper Hubbard band in the 2D Hubbard model at low electron density
title_full_unstemmed Manifestation of the Upper Hubbard band in the 2D Hubbard model at low electron density
title_sort manifestation of the upper hubbard band in the 2d hubbard model at low electron density
author Kagan, M.Yu.
Val’kov, V.V.
Woelfle, P.
author_facet Kagan, M.Yu.
Val’kov, V.V.
Woelfle, P.
topic Низкоразмерные структуры
topic_facet Низкоразмерные структуры
publishDate 2011
language English
container_title Физика низких температур
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
format Article
description We consider the 2D Hubbard model in the strong-coupling case (U >> W) and at low electron density (nd² << 1). We find an antibound state as a pole in the two-particle T-matrix. The contribution of this pole in the self-energy reproduces a two-pole structure in the dressed one-particle Green-function similar to the Hubbard-I approximation. We also discuss briefly the Engelbrecht-Randeria mode which corresponds to the pairing of two holes below the bottom of the band for U >> W and low electron density. Both poles produce nontrivial corrections to Landau Fermi-liquid picture already at low electron density but do not destroy it in 2D.
issn 0132-6414
url https://nasplib.isofts.kiev.ua/handle/123456789/118762
citation_txt Manifestation of the Upper Hubbard band in the 2D Hubbard model at low electron density / M.Yu. Kagan, V.V. Val’kov, P. Woelfle // Физика низких температур. — 2011. — Т. 37, № 9-10. — С. 1046–1052. — Бібліогр.: 16 назв. — англ.
work_keys_str_mv AT kaganmyu manifestationoftheupperhubbardbandinthe2dhubbardmodelatlowelectrondensity
AT valkovvv manifestationoftheupperhubbardbandinthe2dhubbardmodelatlowelectrondensity
AT woelflep manifestationoftheupperhubbardbandinthe2dhubbardmodelatlowelectrondensity
first_indexed 2025-11-25T15:44:37Z
last_indexed 2025-11-25T15:44:37Z
_version_ 1850517106996543488
fulltext © M.Yu. Kagan, V.V. Val’kov, and P. Woelfle, 2011 Low Temperature Physics/Fizika Nizkikh Temperatur, 2011, v. 37, Nos. 9/10, p. 1046–1052 Manifestation of the Upper Hubbard band in the 2D Hubbard model at low electron density M.Yu. Kagan P.L. Kapitza Institute for Physical Problem, 2 ul. Kosygina, Moscow 119334, Russia E-mail: kagan@kapitza.ras.ru V.V. Val’kov Kirensky Institute of Physics, Akademgorodok, 50, bld. 38, Krasnoyarsk 660036, Russia P. Woelfle Institute for Theoretical Condensed Matter physics, Karlsruhe Institute of Technology, Wolfgang-Gaede-Str., 1, Karlsruhe D-76131, Germany Received May 10, 2011 We consider the 2D Hubbard model in the strong-coupling case (U >> W) and at low electron density (nd2 << 1). We find an antibound state as a pole in the two-particle T-matrix. The contribution of this pole in the self-energy reproduces a two-pole structure in the dressed one-particle Green-function similar to the Hubbard-I approximation. We also discuss briefly the Engelbrecht-Randeria mode which corresponds to the pairing of two holes below the bottom of the band for U >> W and low electron density. Both poles produce nontrivial corrections to Landau Fermi-liquid picture already at low electron density but do not destroy it in 2D. PACS: 71.10.Fd Lattice fermion models (Hubbard model, etc.). Keywords: Hubbard model, Green-function, low electron density. Introduction At low electron density ( 2 1nd << — practically empty band) and in the strong-coupling case U W>> the effective interactions in the 2D Hubbard model [1] can be described in the T-matrix approximation (see Kanamori [2]). In the low energy sector Fε ≤ ε and in the framework of this description the 2D Hubbard model becomes equivalent to a 2D Fermi-gas with quadratic spectrum and short-range repulsion [3]. Thus it can be characterized by the 2D gas-parameter of Bloom [4]: 0 2 1 , ln (1/ ) f nd ≈ (1) where 2 / 2Fn p= π is the electron density in 2D (for both spin projections, taking into account that / 2n n nσ −σ= = in the unpolarized case), Fp is the Fermi-momentum, d is the intersite distance. Accordingly many properties of the 2D Hubbard model at low electron density, and in particular the quasiparticle damping near the Fermi-surface 2 2 0~ Im ( , ) ~ lnp F p F p f ε ε γ Σ ε ε ε p have Landau Fermi-liquid character (amended with the specific 2D logarithm) [5], where 2( / 2 )p Fp mε = − ε is quasi-particle spectrum in the low-energy sector Fε ≤ ε and 0f is given by (1). Correspondingly the averaging of Im ( , )pΣ ε p with Fermionic distribution function ( / )F pn Tε produces the familiar result 2( ) ~ Im ( ) ~ lnT T T Tγ Σ in 2D. Accordingly the quasiparticle residue 1Re1Z −∂ Σ⎛ ⎞−⎜ ⎟∂ω⎝ ⎠ ∼ is nonvanishing for 0.ω → However, as first mentioned by J. Hubbard [1] and P.W. Anderson [6], for U W>> the presence of a band of a finite width produces at high energies an additional pole in the two-particle T-matrix, well separated from all other poles, with the energy: 0.Uε >∼ (2) This pole is usually called the antibound state. Already in the first iteration of the self-consistent T-matrix approximation this pole yields a non-trivial contribution to the self-energy ( , ).Σ ε p As a result the dressed one-particle Green-function acquires a two-pole structure, very similar to the Hubbard-I approximation [1]. Manifestation of the Upper Hubbard band in the 2D Hubbard model at low electron density Low Temperature Physics/Fizika Nizkikh Temperatur, 2011, v. 37, Nos. 9/10 1047 The theoretical model We consider the simplest 2D Hubbard model on the square lattice: ,i j ii i ij i i H H N t c c U n n n+ σ σ σ↑ ↓ < >σ σ ′ = −μ = − + −μ∑ ∑ ∑ (3) where i i in c c+ σ σ σ= is the density operator of electrons on site i with spin-projection ,σ U is Hubbard repulsion, t is hopping integral, μ is the chemical potential. The bandwidth 8W t= on the square lattice. After Fourier- transforming we get: p p p p q p qp p p pp q H c c U c c c c+ + + σ σ ′− ↓ + ↑′↑ ↓ ′σ ′ = ε +∑ ∑ , (4) where 2 (cos cos )p x yt p d p dε = − + −μ is the quasiparticle spectrum of the uncorrelated problem. For low electron density 1Fp d << we can often use the quadratic approximation for the spectrum: 2 2 , 2 F p p p m − ε = (5) where 21/ 2m td= is the band-mass; ( / 2) FWμ = − +ε is chemical potential and 2 (cos cos )p p x yt t p d p d= ε + μ = − + ≈ 2 2 2 . 2 2 2 W W ptp d m ≈ − + = − + We will mostly consider the physically more transparent strong-coupling case U W>> at low electron density 2 1.nd << T-matrix approximation We start with the standard definition of the T-matrix in 2D [4,7]: 2 2 2 2 . 1 ( ) ( ) 1 ( )(2 ) F p F q p p q p UdT n ndUd io σ −σ − − = − ε − ε − ω− ε − ε +π∫ p (6) The poles of the T-matrix are governed by the condition: 2 2 2 1 ( ) ( ) 1 . ( )(2 ) F p F q p p q p n ndUd io σ −σ − − − ε − ε = ω− ε − ε +π∫ p (7) For the antibound state for which ~ Uω we can expand (7) and get (see also [8]): 2 2 2 1 ( ) ( ) 1 (2 ) F p F p qn ndUd σ −σ −− ε − ε = × ωπ∫ p 2 1 ,p p qt t −+ − μ⎡ ⎤ × +⎢ ⎥ω⎣ ⎦ (8) where ;p ptε = − μ .p q p q q pt− − −ε = − μ = ε Equivalently we can write: 2 2 21 1 ( ) ( ) (2 ) F p F p q Ud d n nσ −σ −⎡ ⎤= − ε − ε +⎣ ⎦ω π∫ p 2 2 2 2 1 ( ) ( ) ( 2 ) (2 ) F p F p q p p q Ud d n n t tσ −σ − −⎡ ⎤+ − ε − ε + − μ⎣ ⎦ω π∫ p (9) and use that 2 2 ( ) 0 (2 ) p p q d t t −+ = π∫ p when we integrate over the Brillouin zone. Thus: 2 2 2 2 2 2 2 2 2 2 2 2 1 1 ( 2 ) 2 2 (2 ) ( ) ( ) (2 ) F p F p q p p q Ud nd nd Ud d d Ud d n nσ −σ − − ⎛ ⎞ = − − + − μ −⎜ ⎟⎜ ⎟ω ω π⎝ ⎠ ⎡ ⎤ ⎡ ⎤− ε + ε ε + ε⎣ ⎦ ⎣ ⎦ω π ∫ ∫ p p , (10) where we used that in unpolarized case / 2.n n nσ −σ= = Note that / /2 2 2 2 / / 1 2 2(2 ) d d yx BZ d d dpdpdd d π π −π −π = = π ππ∫ ∫ ∫ p for the integration over the Brillouine zone. Hence: 2 2 2 2 21 (1 )U U Udnd μ = − − − × ω ω ω 2 2 ( ) ( ) (2 ) F p F p q p p q d n nσ −σ − −⎡ ⎤ ⎡ ⎤× ε + ε ε + ε⎣ ⎦ ⎣ ⎦π∫ p . (11) In the third term of (11) the integration is restricted by Fermi-factors and hence we can use quadratic approximation for the spectrum 2( / 2 )p Fp mε = − ε . Then for the third term we get: ____________________________________________________ 0 0 02 2 2 2 2 22 0 0 2 cos 2 cos(0) 2 2 2 F F F D p p p F p F Ud d p q pq d p q pqN d d d m m π π −ε −ε −ε ⎡ ⎤⎛ ⎞ ⎛ ⎞ϕ + − ϕ ϕ + + ϕ⎢ ⎥− ε ε + ε − ε + ε − ε =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥π πω ⎝ ⎠ ⎝ ⎠⎣ ⎦ ∫ ∫ ∫ ∫ ∫ 0 02 2 2 2 2 2 22 2(0) 4 2 (0) 2 2 , 2 2 F F D p p p D F F Ud q Ud qN d d N m m −ε −ε ⎡ ⎤ ⎡ ⎤ ⎢ ⎥= − ε ε + ε = − − ε + ε⎢ ⎥ ⎢ ⎥ω ω ⎢ ⎥⎣ ⎦⎣ ⎦ ∫ ∫ (12) M.Yu. Kagan, V.V. Val’kov, and P. Woelfle 1048 Low Temperature Physics/Fizika Nizkikh Temperatur, 2011, v. 37, Nos. 9/10 where we used that 2 2 2 2( ) ( ) . (2 ) (2 ) F p q p F p p q d dn n−σ − −σ +ε ε = ε ε π π∫ ∫ p p In (12) 2 (0) / 2DN m= π is the density of states in 2D for the quadratic spectrum. Hence: 2 2 2 2 2 21 (1 ) 2 . 2 F F mU U Ud qnd m ⎡ ⎤εμ = − − − − ε +⎢ ⎥ ω πω ω ⎢ ⎥⎣ ⎦ (13) Having in mind that 2( / 2 ) ( / 4 ) / 2F Fm p nε π = π = we get 2 2 2 2 2 21 (1 ) 2 . 2 F U U Und qnd m ⎛ ⎞μ = − − − − ε +⎜ ⎟⎜ ⎟ω ω ω ⎝ ⎠ (14) Accordingly for the antibound state: 2 2 2 2 2 2(1 ) 2 . (1 ) 2 (1 ) ab F U Und qU nd mU nd U nd ⎛ ⎞μ ω ≈ − − + ε −⎜ ⎟⎜ ⎟− − ⎝ ⎠ (15) Or respectively 2 2 2 2 2 2(1 ) 21 1 ab F nd qU nd mnd nd ⎛ ⎞μ ω ≈ − − + ε − =⎜ ⎟⎜ ⎟− − ⎝ ⎠ 2 2 2 2 2 2 2(1 ) 2 21 1 F nd nd qU nd mnd nd ⎛ ⎞μ = − − μ − + ε − =⎜ ⎟⎜ ⎟− − ⎝ ⎠ 2 2 2 2 2 2(1 ) 2 ( 2 ) . 21 1 F nd nd qU nd mnd nd = − − μ + ε − μ − − − (16) By analogy with attractive-U Hubbard model [9] we can introduce “bosonic” chemical potential: 2 ,B bEμ = μ − (17) where 2 2 2 2 2(1 ) ( 2 ) (1 ) 1 b F ndE U nd U nd nd W nd = − + ε − μ ≈ − + − (18) is a “binding” energy of antibound pair and 2 *( / 4 )q m− for the spectrum, where the effective mass reads: 2 * 2 (1 ) 2 ndm m m nd − = >> for 2 1.nd << (19) Then we can represent: 2 2 2 , 4 4 ab b B q qE m m∗ ∗ ω = − μ − = − −μ (20) which is quite nice. The spectrum (20) closely resembles the pole of the attractive-U Hubbard model for b FE > ε [9]. The important difference is, however, in the relative sign between 2μ and .bE In the attractive-U Hubbard model 2B bEμ = μ + and the real pairs are created below the bottom of the band. Thus (| | /2)bEμ ≈ − and 0Bμ → at low temperatures. In the repulsive-U Hubbard model for low electron density 2 1:nd << ( / 2) FWμ ≈ − +ε for low temperatures. Only in the case of half-filled band 2 1nd = (one electron per site) the chemical potential / 2Uμ ≈ “jumps” in the middle of the Mott–Hubbard gap .MH UΔ = The situation resembles that for a semiconductor: the chemical potential for 2 1nd = lies in the middle of the forbidden gap. Another important difference is connected with the hole-like dispersion in (20) that is with the sign “–” in front of 2 / 4 .q m∗ The T-matrix close to the pole reads [9]: 2 * ( , ) . 4 B UT q io m ω ω ≈ ω+ +μ + q (21) Imaginary part of the self-energy In the first iteration to the self-consistent T-matrix approximation (see [10,11]): ____________________________________________________ 2 2Im ( , ) Im ( , ) ( ) ( ) (2 ) p F p B p d T n n⎡ ⎤Σ ω = ω+ε + ε + ε +ω =⎣ ⎦π∫ pk p k 2 2 2 2 * * ( ) ( )( ) ( ) ( ) , (2 ) 4 4 p p B F p B B d U n n m m ⎡ ⎤⎛ ⎞+ + = π ω+ ε δ ω+ ε +μ + ε + − −μ⎢ ⎥⎜ ⎟⎜ ⎟π ⎢ ⎥⎝ ⎠⎣ ⎦ ∫ p p k p k (22) _______________________________________________ where ( )F pn ε is fermionic distribution function, 2 *[ (( ) / 4 ) ]B Bn m− + −μp k is bosonic distribution function. Having in mind that 2 ~B bE Uμ = μ − − we get for U T>> [11]: 2 * 2 * ( ) 4 ( ) 1 0 4 e e 1 B B B m T T n m + μ− − ⎛ ⎞+ − −μ = →⎜ ⎟⎜ ⎟ ⎝ ⎠ − p k p k . Manifestation of the Upper Hubbard band in the 2D Hubbard model at low electron density Low Temperature Physics/Fizika Nizkikh Temperatur, 2011, v. 37, Nos. 9/10 1049 Thus: 2 2 2 * ( )Im ( , ) ( (2 ) 4 B p dU m ⎡ ⎤+ Σ ω = π − −μ δ ω+ ε +⎢ ⎥ π ⎢ ⎥⎣ ⎦ ∫ p p kk 2 * ( ) ) ( ) 4 B F pn m + +μ + ε p k . (23) Here again we have the important difference with attractive-U Hubbard model where at low temperatures 0:T → 2 Bn n= while 0.Fn = In repulsive-U Hubbard model we have vice-versa 0Bn = and Fn n= for 0.T → Having in mind that * / 1m m >> for 2 1nd << we can neglect 2 *( ) / 4m+p k in (23). Thus we get [11]: 0 2Im ( , ) (0) ( ) F D B p p BN U d −ε Σ ω = −π μ ε δ ω+ ε + μ =∫k [ ]2 (0) ( ) ( ) .D B B B FN U= −π μ θ ω+ μ − θ ω+ μ − ε (24) Real part of the self energy Correspondingly for the real part of the self- energy[10,11]: Re ( , )Σ ω =k 2 2Re ( , ) ( ) ( ) (2 ) p B p F p dT n n⎡ ⎤= ω+ε + ω+ε + ε⎣ ⎦ π∫ pp k (25) and again neglecting ( )B pn ω+ ε for U T>> we get: Re ( , )Σ ω =k 2 2 * (0) ( ) ( ) 4 p D F p p p B UN n d m ω+ ε = ε ε + ω+ ε +μ + ∫ p k . (26) For * / 1m m >> : 2 *( ) / 4m+p k is small and thus: 0 2Re ( , ) (0) F p D p p B UN d −ε ω+ ε Σ ω = ε = ω+ ε + μ∫k 0 2 (0) F p D F B p B d UN −ε ⎡ ⎤ε ⎢ ⎥= ε −μ = ⎢ ⎥ω+ ε +μ ⎣ ⎦ ∫ 2 (0) ln B D F B B F UN ⎡ ⎤ω+ μ = ε −μ⎢ ⎥ ω+ μ − ε⎢ ⎥⎣ ⎦ . (27) Assuming that B Fω+ μ > ε and expanding the logarithm in the second term we get: 2 2Re ( , ) (0) 2 F D B B ndUN U ε ω ω Σ ω = = ω+μ ω+μ k . (28) Thus the pole of the dressed one-particle Green-function [12] 1 1 0( , ) ( , ) ( , )G G− −ω = ω −Σ ωk k k reads: 2 0. 2k B ndU ω ω−ε − = ω+μ (29) Correspondingly: 2 2 2 22 2 0; 2 2 2 0. 2 2 B k k B B k B k k B Und Und Und ⎛ ⎞ ω + μ − ε − ω− ε μ =⎜ ⎟⎜ ⎟ ⎝ ⎠ ⎛ ⎞ ⎛ ⎞ μ − ε − μ − ε −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ω+ − − ε μ = ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ As a result: 22 2 1,2 2 2 . 2 2 B k B k k B Und Und⎛ ⎞ μ − ε − μ − ε −⎜ ⎟ ⎜ ⎟ω = − ± + ε μ ⎜ ⎟ ⎜ ⎟ ⎝ ⎠ (30) Having in mind that ~B Uμ − we can expand the square root in (30). Then: 2 1,2 2 2 B k Und μ − ε − ω = − ± 2 2 2 . 2 2 B k k B B k Und Und ⎛ ⎞ ⎜ ⎟μ − ε −⎜ ⎟ε μ ± +⎜ ⎟ ⎜ ⎟μ − ε −⎜ ⎟ ⎝ ⎠ (31) We know that 0Bμ < and 2 ; 2B k Und⎧ ⎫⎪ ⎪μ >> ε⎨ ⎬ ⎪ ⎪⎩ ⎭ . That is why 2 2 2 2 2 2 B k B k Und Und μ − ε − μ − ε − = − and hence: 2 1,2 2 2 B k Und μ − ε − ω = − ∓ 2 2 2 2 2 B k k B B k Und Und ⎛ ⎞ μ − ε −⎜ ⎟ε μ⎜ ⎟+ ⎜ ⎟ μ − ε −⎜ ⎟ ⎝ ⎠ ∓ . (32) M.Yu. Kagan, V.V. Val’kov, and P. Woelfle 1050 Low Temperature Physics/Fizika Nizkikh Temperatur, 2011, v. 37, Nos. 9/10 Finally: 2 1 2 2 2 2 2 . 2 k B B k B k k B B k Und Und Und ⎧ ⎛ ⎞ ε μ ω = − μ − ε − −⎪ ⎜ ⎟⎜ ⎟⎪ ⎝ ⎠ μ − ε −⎪ ⎨ ε μ⎪ω =⎪ ⎪ μ − ε − ⎩ (33) The dressed Green-function ( , )G ω k reads: 1 2 1 2 1 2 1 1( , ) ( )( ) B BG ⎡ ⎤ω+μ ω+μ ω = = − =⎢ ⎥ω−ω ω−ω ω −ω ω−ω ω−ω⎣ ⎦ k 1 2 1 2 1 1 2 2 1 2 1 1 1B B⎛ ⎞ ⎛ ⎞ω +μ ω +μ = − + −⎜ ⎟ ⎜ ⎟ω −ω ω−ω ω −ω ω−ω ω −ω⎝ ⎠ ⎝ ⎠ 1 2 1 2 1 2 1 1 2 2 1 1 1 .B B⎛ ⎞ ⎛ ⎞ω +μ ω +μ − = −⎜ ⎟ ⎜ ⎟ω −ω ω −ω ω−ω ω −ω ω−ω⎝ ⎠ ⎝ ⎠ (34) Let us check the poles structure: 2 1 2 2 2 2 2 . 2 k B B k B k k B B k Und Und Und ⎧ ⎛ ⎞ ε μ ω−ω = ω+ μ − ε − +⎪ ⎜ ⎟⎜ ⎟⎪ ⎝ ⎠ μ − ε −⎪ ⎨ ε μ⎪ω−ω = ω−⎪ ⎪ μ − ε − ⎩ (35) But 22 (1 )B b bE E U ndμ = μ− ≈ − ≈ − − and 2 2 1 . 2 2B Und ndU ⎛ ⎞ μ − ≈ − −⎜ ⎟⎜ ⎟ ⎝ ⎠ Of course 2 2B k Und μ − >> ε . Hence: ____________________________________________________ 2 22 2 2 2 1 22 (1 ) (1 ) 1 1 1 2 2 2 2 11 22 k k k k k U nd ndnd nd nd ndU U U ndndU ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ε − ε − ω−ω = ω− ε − − − = ω− ε − − + = ω− − + ε − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛ ⎞⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠−− −⎜ ⎟⎜ ⎟ ⎝ ⎠ 2 22 2 2 2 22 (1 ) (1 ) 1 ; 1 . 2 2 2 1( ) 1 22 k k k k U nd ndnd nd ndU ndndU ⎛ ⎞ ⎛ ⎞ε − ε − = ω− − − ε ω−ω = ω+ = ω− ≈ ω− ε −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎛ ⎞⎝ ⎠ ⎝ ⎠−− −⎜ ⎟⎜ ⎟ ⎝ ⎠ (36) In the same time the first term in (34) yields: 2 2 1 2 2 21 1 2 1 2 2 2 2 221 1 1 1 2 21 1 1 1 2 2 2 1 (1 ) 21 1 11 . 2( ) 11 22 k B B k k nd ndU nd nd ndU ndU U nd nd nd ndndU ⎛ ⎞ − + ε +μ⎜ ⎟⎜ ⎟ω +μ ⎝ ⎠= ≈ ω−ω ω −ω ω−ω ⎛ ⎞ ⎛ ⎞ − + ε − ε −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠ ⎛ ⎞ ⎛ ⎞− − −⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎜ ⎟≈ = − ≈ ω−ω ω−ω ω−ω⎜ ⎟⎛ ⎞ −−⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠ (37) _______________________________________________ The second term in (34) reads: 2 2 2 22 1 2 2 1 (1 ) 21 1 1 2 k B nd U nd ndU ⎛ ⎞ ε − − −⎜ ⎟⎜ ⎟ω +μ ⎝ ⎠≈ ≈ ω−ω ω −ω ω−ω ⎛ ⎞ −⎜ ⎟⎜ ⎟ ⎝ ⎠ 2 2 22 2 1 (1 ) 1 1 . 2 1 2 U nd nd ndU ⎛ ⎞− ≈ − ≈ − −⎜ ⎟⎜ ⎟ω−ω ω−ω⎛ ⎞ ⎝ ⎠−⎜ ⎟⎜ ⎟ ⎝ ⎠ (38) Thus 22 2 2 2 1 22( , ) 1 1 2 2 2k k ndnd G nd nd ndU ⎡ ⎤⎛ ⎞ −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠ω ≈ +⎢ ⎥⎛ ⎞ ⎛ ⎞⎢ ⎥ω− − − ε ω− ε −⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎣ ⎦ k (39) and we completely recover the Hubbard-I approximation [1,13]. The first pole in (39) corresponds to the Upper Hubbard band (UHB). Thus 2 / 2UHBZ nd= . The second Manifestation of the Upper Hubbard band in the 2D Hubbard model at low electron density Low Temperature Physics/Fizika Nizkikh Temperatur, 2011, v. 37, Nos. 9/10 1051 pole corresponds to the lower Hubbard band (LHB): 2 1 2LHB ndZ ⎛ ⎞ = −⎜ ⎟⎜ ⎟ ⎝ ⎠ . Of course, 1.UHB LHBZ Z+ = We can rewrite ( , )G ω k as: ( , ) LHB k LHB Z G Z io ω = + ω− ε + k 2 . 1 2 UHB UHB k Z ndU Z io + ⎛ ⎞ ω− − − ε +⎜ ⎟⎜ ⎟ ⎝ ⎠ (40) Note that the second iteration to the self-consistent T-matrix approximation does not change the gross features of (40). Thus the antibound state yields nontrivial corrections to Landau Fermi-liquid picture already at low electron density, but does not destroy it in 2D. The simplest Hartree-Fock contribution to the thermodynamic potential Ω from the upper Hubbard band 2 0 2( , ) ( , ) 2(2 ) d dG ω ΔΩ Σ ω ω ππ∫ pp p∼ with 0( , )G ω p and ( , )Σ ω p given by (28), (29) yields 3~ .UHB FZ n nΔΩ ε∼ Engelbrecht–Randeria mode For the sake of completeness let us discuss briefly the Engelbrecht–Randeria mode[14] which also corresponds to the pole of the T-matrix for U W>> and 2 1.nd << According to [14] it has a spectrum for 2 Fq p< : 2 0 1exp . 2 q ER q Ff ω⎧ ⎫ ω ≈ ω − −⎨ ⎬ ε⎩ ⎭ (41) Note that while antibound state exists also in 3D physics, the Engelbrecht–Randeria mode is specific for 2D Hubbard model. In (41) 2 2 4q F q m ω = − ε and 2 0 1exp nd f ⎧ ⎫ − =⎨ ⎬ ⎩ ⎭ in agreement with (1). Note that for 0:q = 22 2 0ER F F ndω = − ε − ε < . (42) The collective character of Engelbrecht–Randeria mode is connected with the fact that in the absence of fermionic background (for 0Fε = ) 0ERω = in (42). Moreover 2 .ER Fω < − ε Hence this mode lies below the bottom of the band and corresponds to the binding of two holes (Recall that the antibound state lies above the upper edge of the band). In terms of the “bosonic” chemical potential :Bμ 2 , 4ER B q m ω ≈ −μ (43) where in terms of ( / 2) ,FWμ ≈ − +ε 2 | |B bEμ = μ+ and the binding energy 2| | 2b FE W nd≈ + ε . Conclusion and acknowledgements We considered the excitation spectrum of the Hubbard model at low electron density, where a small parameter (gas parameter) allows a controlled expansion. On the level of the first iteration to the self-consistent T-matrix approximation we found the contribution of the T-matrix pole corresponding to the antibound state to the self-energy .Σ As a result we got a two-pole structure of the dressed one-particle Green-function which closely resembles the Hubbard-I approximation. It would be interesting to find the possible contribution of the Upper Hubbard band to the ground-state energy or compressibility and to build the bridge between the Galitskii–Bloom Fermi-gas expansion for the ground-state energy (or compressibility) and the Gutzwiller type of expansion for the partially filled band [15] when the electron density is increased. For the sake of completeness we also analyzed the Engelbrecht-Randeria mode which corresponds to the pairing of two holes below the bottom of the band. According to [14] this mode, when keeping the full q-de- pendence for 0 2 ,Fq p≤ < gives nonanalytic corrections 5/2~ ω to the imaginary part of the self-energy Im ( )Σ ω in 2D. It also contributes to the thermodynamics at 0T = in the same order in density as the contribution of the antibound state: 2 3~ ~ 0F n nd nΔΩ ε ⋅ > — amounting to an increase of the thermodynamic potential Ω [14]. Thus the Engelbrecht–Randeria mode as well as the Hubbard- Anderson mode corresponding to the antibound state yield interesting corrections to the Landau Fermi-liquid picture in 2D already at low electron density, but do not destroy it completely in contrast to the 1D-case, where we have the Luttinger liquid state and a vanishing quasiparticle residue 0Z → for 0ω→ [16]. We acknowledge helpful discussions with P.B. Wiegman, D. Vollhardt, P. Fulde, K.I. Kugel, and A.F. Barabanov. This work was supported by RFBR grants №11-02- 00798 and 11-02-00741. 1. J. Hubbard, Proc. Roy. Soc. London A276, 238 (1963). 2. J. Kanamori, Progr. Theor. Phys. 30, 275 (1963). 3. M.A. Baranov, A.V. Chubukov, and M.Yu. Kagan, Int. J. Mod. Phys. B6, 2471 (1992) ; M.A. Baranov and M.Yu. Kagan, Zeit. Phys. B- Condens. Matt. 86, 237 (1992). 4. P. Bloom, Phys. Rev. B12, 125 (1975). 5. E.M. Lifshitz and L.P. Pitaevskii, Statistical Physics, Part 2, Pergamon, New York (1980); C. Hodges, H. Smith, and J.W. Wilkins, Phys. Rev. B4, 302 (1971); H. Fukuyama, O. Narikiyo, and Y. Hasegawa, J. Phys. Soc. Jpn. 60, 372 (1991); H. Fukuyama, O. Narikiyo and Y. Hasegawa, J. Phys. Soc. Jpn. 60, 2013 (1991). 6. P.W. Anderson, Phys. Rev. Lett. 64, 1839 (1990); Phys. Rev. Lett. 65, 2306 (1990); Phys. Rev. Lett. 66, 3226 (1991). 7. V.M. Galitskii, JETP 34, 151 (1958). M.Yu. Kagan, V.V. Val’kov, and P. Woelfle 1052 Low Temperature Physics/Fizika Nizkikh Temperatur, 2011, v. 37, Nos. 9/10 8. V.V. Val’kov and V.A. Mitskan, Phys. Met. Metallogr. 100, 510 (2005). 9. M.Yu. Kagan, R. Fresard, M. Capezzali, and H. Beck, Phys. Rev. B57, 5995 (1998); Physica B284–288, 447 (2000); R. Combescot, X. Leyronas, and M.Yu. Kagan, Phys. Rev. A73, 023618 (2006). 10. M.Yu. Kagan and V.V. Val’kov, Fiz. Nizk. Temp. 37, 84 (2011) [Low. Temp. Phys. 37, 69 (2011)]; JETP 140, 179 (2011). 11. M.Yu. Kagan and P. Woelfle — unpublished. 12. A.A. Abrikosov, L.P. Gor’kov, and I.E. Dzyaloshunskii, Methods of Quantum Field Theory in Statistical Physics Fizmatgiz, Moscow (1962); Dover, New York (1975). 13. P. Fulde, Electron Correlations in Molecules and Solids, Second Edition, Springer-Verlag, Stuttgart (1993). 14. J.R. Engelbrecht and M. Randeria, Phys. Rev. Lett. 65, 1032 (1990); Phys. Rev. Lett. 66, 3225 (1991); Phys. Rev. B45, 12419 (1992). 15. M.C. Gutzwiller, Phys. Rev. Lett. 10, 159 (1963); D. Vollhardt, Rev. Mod. Phys. 56, 99 (1984); D. Vollhardt, P. Woelfle, and P.W. Anderson, Phys. Rev. B35, 6703 (1987). 16. V.J. Emery, in: Highly Conducting One-Dimensional Solids, J.T. Devreese (ed.) Plenum, New York (1979); J. Solym, Adv. Phys. 28, 201 (1979); F.D.M. Haldane, J. Phys. C14, 2585 (1981).