A neural computation to study the scaling capability of the undoped DG MOSFET

The DG MOSFET is one of the most promising candidates for further CMOS scaling beyond the year of 2010. It will be scaled down to various degrees upon a wide range of system/circuit requirements (such as high-performance, low standby power and low operating power). The key electrical parameter of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Semiconductor Physics Quantum Electronics & Optoelectronics
Datum:2008
Hauptverfasser: Djeffal, F., Guessasma, S., Benhaya, A., Bendib, T.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України 2008
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/118884
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:A neural computation to study the scaling capability of the undoped DG MOSFET / F. Djeffal, S. Guessasma, A. Benhaya, T. Bendib // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2008. — Т. 11, № 2. — С. 196-202. — Бібліогр.: 11 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-118884
record_format dspace
spelling Djeffal, F.
Guessasma, S.
Benhaya, A.
Bendib, T.
2017-06-01T04:04:50Z
2017-06-01T04:04:50Z
2008
A neural computation to study the scaling capability of the undoped DG MOSFET / F. Djeffal, S. Guessasma, A. Benhaya, T. Bendib // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2008. — Т. 11, № 2. — С. 196-202. — Бібліогр.: 11 назв. — англ.
1560-8034
PACS 85.30.-z, 07.05.Mh, 68.65.-k, 85.35.-p
https://nasplib.isofts.kiev.ua/handle/123456789/118884
The DG MOSFET is one of the most promising candidates for further CMOS scaling beyond the year of 2010. It will be scaled down to various degrees upon a wide range of system/circuit requirements (such as high-performance, low standby power and low operating power). The key electrical parameter of the DG MOSFET is the subthreshold swing (S). In this paper, we present the applicability of the artificial neural network for the study of the scaling capability of the undoped DG MOSFET. The latter is based on the development of a semi-analytical model of the subthreshold swing (S) using the Finite Elements Method (FEM). Our results are discussed in order to draw some useful information about the ULSI technology.
en
Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України
Semiconductor Physics Quantum Electronics & Optoelectronics
A neural computation to study the scaling capability of the undoped DG MOSFET
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title A neural computation to study the scaling capability of the undoped DG MOSFET
spellingShingle A neural computation to study the scaling capability of the undoped DG MOSFET
Djeffal, F.
Guessasma, S.
Benhaya, A.
Bendib, T.
title_short A neural computation to study the scaling capability of the undoped DG MOSFET
title_full A neural computation to study the scaling capability of the undoped DG MOSFET
title_fullStr A neural computation to study the scaling capability of the undoped DG MOSFET
title_full_unstemmed A neural computation to study the scaling capability of the undoped DG MOSFET
title_sort neural computation to study the scaling capability of the undoped dg mosfet
author Djeffal, F.
Guessasma, S.
Benhaya, A.
Bendib, T.
author_facet Djeffal, F.
Guessasma, S.
Benhaya, A.
Bendib, T.
publishDate 2008
language English
container_title Semiconductor Physics Quantum Electronics & Optoelectronics
publisher Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України
format Article
description The DG MOSFET is one of the most promising candidates for further CMOS scaling beyond the year of 2010. It will be scaled down to various degrees upon a wide range of system/circuit requirements (such as high-performance, low standby power and low operating power). The key electrical parameter of the DG MOSFET is the subthreshold swing (S). In this paper, we present the applicability of the artificial neural network for the study of the scaling capability of the undoped DG MOSFET. The latter is based on the development of a semi-analytical model of the subthreshold swing (S) using the Finite Elements Method (FEM). Our results are discussed in order to draw some useful information about the ULSI technology.
issn 1560-8034
url https://nasplib.isofts.kiev.ua/handle/123456789/118884
citation_txt A neural computation to study the scaling capability of the undoped DG MOSFET / F. Djeffal, S. Guessasma, A. Benhaya, T. Bendib // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2008. — Т. 11, № 2. — С. 196-202. — Бібліогр.: 11 назв. — англ.
work_keys_str_mv AT djeffalf aneuralcomputationtostudythescalingcapabilityoftheundopeddgmosfet
AT guessasmas aneuralcomputationtostudythescalingcapabilityoftheundopeddgmosfet
AT benhayaa aneuralcomputationtostudythescalingcapabilityoftheundopeddgmosfet
AT bendibt aneuralcomputationtostudythescalingcapabilityoftheundopeddgmosfet
AT djeffalf neuralcomputationtostudythescalingcapabilityoftheundopeddgmosfet
AT guessasmas neuralcomputationtostudythescalingcapabilityoftheundopeddgmosfet
AT benhayaa neuralcomputationtostudythescalingcapabilityoftheundopeddgmosfet
AT bendibt neuralcomputationtostudythescalingcapabilityoftheundopeddgmosfet
first_indexed 2025-12-07T16:16:52Z
last_indexed 2025-12-07T16:16:52Z
_version_ 1850866886543147008