On the determination of the quasiparticle scattering rate in unconventional superconductors by microwave surface impedance

As found from numerous microwave experiments on the unconventional Fe-based superconductors, the temperature dependence of the quasiparticle scattering rate t⁻¹ cannot be accurately described within the framework of standard Drude module in the popular approximation of wt << 1, where w is the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Физика низких температур
Datum:2013
Hauptverfasser: Cherpak, N.T., Barannik, A.A., Prozorov, R., Tanatar, M., Velichko, A.V.
Format: Artikel
Sprache:English
Veröffentlicht: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2013
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/118928
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:On the determination of the quasiparticle scattering rate in unconventional superconductors by microwave surface impedance / N.T. Cherpak, A.A. Barannik, R. Prozorov, M. Tanatar, A.V. Velichko // Физика низких температур. — 2013. — Т. 39, № 12. — С. 1423–1425. — Бібліогр.: 25 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-118928
record_format dspace
spelling Cherpak, N.T.
Barannik, A.A.
Prozorov, R.
Tanatar, M.
Velichko, A.V.
2017-06-01T09:54:13Z
2017-06-01T09:54:13Z
2013
On the determination of the quasiparticle scattering rate in unconventional superconductors by microwave surface impedance / N.T. Cherpak, A.A. Barannik, R. Prozorov, M. Tanatar, A.V. Velichko // Физика низких температур. — 2013. — Т. 39, № 12. — С. 1423–1425. — Бібліогр.: 25 назв. — англ.
0132-6414
PACS: 74.25.nn, 74.70.Xa
https://nasplib.isofts.kiev.ua/handle/123456789/118928
As found from numerous microwave experiments on the unconventional Fe-based superconductors, the temperature dependence of the quasiparticle scattering rate t⁻¹ cannot be accurately described within the framework of standard Drude module in the popular approximation of wt << 1, where w is the signal frequency. To account for the discrepancy, we have extended the classical Drude model for the case of arbitrary values of wt, and obtained the expression for t⁻¹ as a function of experimentally measurable quantities, namely the real and imaginary parts of the microwave surface impedance. We then show the temperature dependence of t⁻¹ in supercon-ducting Ba(Fe₁–xCox)₂As₂ single crystal pnictide derived from the Ka-band surface impedance measurements within the framework of the modified expression. The measurements indicate the extent to which assumption of wt << 1 gives results different from those obtained without this restriction, i.e., incorrect results.
en
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
Физика низких температур
Краткие сообщения
On the determination of the quasiparticle scattering rate in unconventional superconductors by microwave surface impedance
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On the determination of the quasiparticle scattering rate in unconventional superconductors by microwave surface impedance
spellingShingle On the determination of the quasiparticle scattering rate in unconventional superconductors by microwave surface impedance
Cherpak, N.T.
Barannik, A.A.
Prozorov, R.
Tanatar, M.
Velichko, A.V.
Краткие сообщения
title_short On the determination of the quasiparticle scattering rate in unconventional superconductors by microwave surface impedance
title_full On the determination of the quasiparticle scattering rate in unconventional superconductors by microwave surface impedance
title_fullStr On the determination of the quasiparticle scattering rate in unconventional superconductors by microwave surface impedance
title_full_unstemmed On the determination of the quasiparticle scattering rate in unconventional superconductors by microwave surface impedance
title_sort on the determination of the quasiparticle scattering rate in unconventional superconductors by microwave surface impedance
author Cherpak, N.T.
Barannik, A.A.
Prozorov, R.
Tanatar, M.
Velichko, A.V.
author_facet Cherpak, N.T.
Barannik, A.A.
Prozorov, R.
Tanatar, M.
Velichko, A.V.
topic Краткие сообщения
topic_facet Краткие сообщения
publishDate 2013
language English
container_title Физика низких температур
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
format Article
description As found from numerous microwave experiments on the unconventional Fe-based superconductors, the temperature dependence of the quasiparticle scattering rate t⁻¹ cannot be accurately described within the framework of standard Drude module in the popular approximation of wt << 1, where w is the signal frequency. To account for the discrepancy, we have extended the classical Drude model for the case of arbitrary values of wt, and obtained the expression for t⁻¹ as a function of experimentally measurable quantities, namely the real and imaginary parts of the microwave surface impedance. We then show the temperature dependence of t⁻¹ in supercon-ducting Ba(Fe₁–xCox)₂As₂ single crystal pnictide derived from the Ka-band surface impedance measurements within the framework of the modified expression. The measurements indicate the extent to which assumption of wt << 1 gives results different from those obtained without this restriction, i.e., incorrect results.
issn 0132-6414
url https://nasplib.isofts.kiev.ua/handle/123456789/118928
citation_txt On the determination of the quasiparticle scattering rate in unconventional superconductors by microwave surface impedance / N.T. Cherpak, A.A. Barannik, R. Prozorov, M. Tanatar, A.V. Velichko // Физика низких температур. — 2013. — Т. 39, № 12. — С. 1423–1425. — Бібліогр.: 25 назв. — англ.
work_keys_str_mv AT cherpaknt onthedeterminationofthequasiparticlescatteringrateinunconventionalsuperconductorsbymicrowavesurfaceimpedance
AT barannikaa onthedeterminationofthequasiparticlescatteringrateinunconventionalsuperconductorsbymicrowavesurfaceimpedance
AT prozorovr onthedeterminationofthequasiparticlescatteringrateinunconventionalsuperconductorsbymicrowavesurfaceimpedance
AT tanatarm onthedeterminationofthequasiparticlescatteringrateinunconventionalsuperconductorsbymicrowavesurfaceimpedance
AT velichkoav onthedeterminationofthequasiparticlescatteringrateinunconventionalsuperconductorsbymicrowavesurfaceimpedance
first_indexed 2025-11-26T01:42:46Z
last_indexed 2025-11-26T01:42:46Z
_version_ 1850603163694923776
fulltext © N.T. Cherpak, A.A. Barannik, R. Prozorov, M. Tanatar, and A.V. Velichko, 2013 Low Temperature Physics/Fizika Nizkikh Temperatur, 2013, v. 39, No. 12, pp. 1423–1425 Краткие сообщения On the determination of the quasiparticle scattering rate in unconventional superconductors by microwave surface impedance N.T. Cherpak 1 , A.A. Barannik 1 , R. Prozorov 2,3 , M. Tanatar 2 , and A.V. Velichko 1 1 A. Usikov Institute of Radiophysics and Electronics of the National Academy of Sciences of Ukraine 12 Acad. Proskura Str., Kharkiv 61085, Ukraine E-mail: cherpak@ire.kharkov.ua 2 Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA 3 Ames Laboratory USDOE, Ames, IA 50011, USA Received July 16, 2013 As found from numerous microwave experiments on the unconventional Fe-based superconductors, the tem- perature dependence of the quasiparticle scattering rate –1 cannot be accurately described within the framework of standard Drude module in the popular approximation of 1, where is the signal frequency. To account for the discrepancy, we have extended the classical Drude model for the case of arbitrary values of , and ob- tained the expression for –1 as a function of experimentally measurable quantities, namely the real and imagi- nary parts of the microwave surface impedance. We then show the temperature dependence of –1 in supercon- ducting Ba(Fe1–xCox)2As2 single crystal pnictide derived from the Ka-band surface impedance measurements within the framework of the modified expression. The measurements indicate the extent to which assumption of 1 gives results different from those obtained without this restriction, i.e., incorrect results. PACS: 74.25.nn Surface impedance; 74.70.Xa Pnictides and chalcogenides. Keywords: quasiparticle conductivity, microwave surface impedance, Fe-pnictide. Studying the temperature dependence of the quasi- particle scattering rate –1 offers a great insight into the underlying physics of superconductors. Here, the absolute value and the temperature dependence of –1 reflect very important characteristics of the electron system of the ma- terials [1]. Of particular interest is studying the electron system in the unconventional superconductors (in particu- lar the high-Tc cuprates and Fe-based superconductors), and recently a plethora of various experimental techniques covering a wide range of signal frequencies have been used to accomplish this purpose (see, e.g., [2–5]). Supercon- ducting single crystals and films were measured using dc signal by, e.g., magnetic-force microscopy and scanning SQUID [6,7]. Measurements by means of radio-frequency tunnel-diode resonators [8–10], microwave-range reso- nance cavities [11–15] as well as THz and optical reflectiv- ity [16,17] techniques have also been reported. As far as microwave measurements are concerned, once can use surface impedance data to extract complex conduc- tivity of the superconductor which, in case, gives us an opportunity to extract the temperature-dependent London penetration depth L and the quasiparticle scattering rate –1 . In addition, since the scattering in the normal state is di- rectly related to the superconducting pairing strength [18], extension of those measurements into a superconducting state is of notable interest. Apparently, microwave and higher frequency meas- urements are the only kind of experiments that allow one to determine the complex conductivity in a superconduct- ing state [19], which in turn can be used to extract –1 and the interesting fact is that the values of have been found to dramatically increase in the unconventional supercon- ductors (see, e.g., [20]). The task of finding is usually straightforward in the case of << 1, however in the unconventional super- conductors where –1 is strongly temperature-dependent [11–14], and as the signal frequencies increase towards the millimeter wave range [15], researches often come across the difficulty of processing the experimental data for the case of arbitrary values. N.T. Cherpak, A.A. Barannik, R. Prozorov, M. Tanatar, and A.V. Velichko 1424 Low Temperature Physics/Fizika Nizkikh Temperatur, 2013, v. 39, No. 12 In this paper we address the problem of obtaining the generalized expression for the quasiparticle scattering rate in terms of microwave surface impedance valid for arbi- trary values of , and then extract the temperature de- pendence of in the experimentally measured single crystal of BaFeCoAs. Within framework of the local electrodynamics, micro- wave surface impedance of the conducting materials is determined as (in SI) [21] 0 ,s s s i Z = R iX (1) where is the frequency of electromagnetic field, which varies as e i t ; 0 is the magnetic permeability of vacuum; is the microwave conductivity, which is a complex value   –   ;i sR and sX are surface resistance and reac- tance of the conductor. Using different techniques of measurements in the microwave range, one can accurately determine experimentally values of sR and sX (see, e.g., [19,22]), which in turn determine the conductivity . According to the two-fluid model there are two cur- rents: a superconducting current, conditioned by superfluid component, and the normal current attributed to quasi- particles. Correspondingly, the conductivity in (1) can be written as [23] 2 , 1 s n s n n ne i m i i (2) where   –   ,l li nn and sn are electron concentration of quasiparticle and superfluid components accordingly, ,n sn n n where n is constant; e and m are the charge and mass of electrons. The conductivity n is written in the assumption of validity of the Drude model. We now need to express the conductivity (2) in terms of ( )sR T and ( )sX T because these are the quantities meas- ured in the experiments: 0 4 2 ,s s s X R Z 2 2 0 4 ,s s s X R Z (3) where 4 2 2 2( ) .s s sZ X R It is worth noting that at << 1 the conductivity can be written in the form 2 1 2 1 2; 0; .s n s ne n i i i m (4) At arbitrary values of , on the other hand, from (2) and (4) we obtain 1 2 1 2 1 22 2 2 2 ; , 1 1 (5) where 2 2 0 1 . ( )L T On the assumption that in the superconducting state at sufficiently low temperatures (0) 0nn and (0) ,sn n one can use equations (5) to obtain [23] 2 2 0 1 (0) ( ) 1 ; (0) (0) . ( ) ( ) (0)L T T T (6) Substituting (3) into (6) yields 2 2 2 0 1 1 1 . 2( ) (0) s s s sL X R X RT (7) When << 1 the expression (7) becomes the well known formula [24] 2 2 2 0 1 1 [ (0)/ ( )]1 . ( ) (0) L L L T T (8) Figure 1 shows the scattering rate in the optimally doped pnictide single crystal Ba(Fe1–xCox)2As2 [8,9] as a function of temperature. The data are obtained from Ka- band microwave impedance measurements by using high Q-factor quasioptical slotted sapphire resonator (excited in whispering gallery modes) with YBCO end plates, and the expressions (7) and (8) are used to process the impedance measurement data. It is seen that (7) gives a significant correction in (T) at low temperatures for exceeding 0.05. In turn, a more accurate estimate of gives an opportunity to more accu- rately obtain 2( ),T which is determined by the measured ( )sR T and ( )sX T and offers information about the pene- tration depth ( )L T and the structure of the superconduct- ing energy gap [3]. Finally, we should emphasize that the generalized ex- pression for (Eq. (7)) derived in this work and valid for arbitrary values of in combination with the novel Fig. 1. The temperature dependence of the quasiparticle scattering rate τ −1 in a single crystal of optimally-doped Ba(Fe1–xCox)2As2 calculated using the generalized expression (7) and expression (8) valid at << 1. The horizontal dotted line shows τ −1 for = 0.05. 0 5 10 15 20 10 11 10 12 10 13 10 14 experiment (formula (8)) fitting (formula (8)) experiment (formula (7)) fitting (formula (7)) T, K On the determination of the quasiparticle scattering rate in unconventional superconductors by microwave surface Low Temperature Physics/Fizika Nizkikh Temperatur, 2013, v. 39, No. 12 1425 resonator technique with HTS end plates [22,25] enabled us to study the temperature dependence of the quasiparticle scattering rate for the whole family of the Fe-based superconductors including Fe-pnictides [25], Fe-chalco- genides [14] and others at microwave frequencies. The authors thank Dr. S.A. Vitusevich, FZ Jülich Peter Grünberg Institute, Germany, for supporting this research. 1. D.A. Bonn, S. Kamal, Kuan Zhang, Ruixing Liang, D.J. Baar, E. Klein, and W.N. Hardy, Phys. Rev. B 50, 4051 (1994). 2. P.J. Hirschfeld, M.M. Korshunov, and I.I. Mazin, Rep. Prog. Phys. 74, 124508 (2011). 3. R. Prozorov and V.G. Kogan, Rep. Prog. Phys. 74, 124505 (2011). 4. G.R. Stewart, Rev. Mod. Phys. 83, 1589 (2011). 5. A. Chubukov, Annu. Rev. Condens. Matter Phys. 3, 57 (2012). 6. L. Luan, O.M. Auslaender, T.M. Lippman, C.W. Hicks, B. Kalisky, J.-H. Chu, J.G. Analytis, I.R. Fisher, J.R. Kirtley, and K.A. Moler, Phys. Rev. B 81, 100501 (2010). 7. L. Luan, T.M. Lippman, C.W. Hicks, J.A. Bert, O.M. Auslaender, J.-H. Chu, J.G. Analytis, I.R. Fisher, and K.A. Moler, Phys. Rev. Lett. 106, 067001 (2011). 8. R.T. Gordon, N. Ni, C. Martin, M.A. Tanatar, M.D. Vannette, H. Kim, G.D. Samolyuk, J. Schmalian, S. Nandi, A. Kreyssig, A.I. Goldman, J.Q. Yan, S.L. Bud’ko, P.C. Canfield, and R. Prozorov, Phys. Rev. Lett. 102, 127004 (2009). 9. R.T. Gordon, C. Martin, H. Kim, N. Ni, M.A. Tanatar, J. Schmalian, I.I. Mazin, S.L. Budko, P.C. Canfield, and R. Prozorov, Phys. Rev. B 79, 100506(R) (2009). 10. H. Kim, R.T. Gordon, M.A. Tanatar, J. Hua, U. Welp, W.K. Kwok, N. Ni, S.L. Budko, P.C. Canfield, A.B. Vorontsov, and R. Prozorov, Phys. Rev. B 82, 060518 (2010). 11. K. Hashimoto, T. Shibauchi, T. Kato, K. Ikada, R. Okazaki, H. Shishido, M. Ishikado, H. Kito, A. Iyo, H. Eisaki, S. Shamoto, and Y. Matsuda, Phys. Rev. Lett. 102, 017002 (2009). 12. K. Hashimoto, T. Shibauchi, S. Kasahara, K. Ikada, S. Tonegawa, T. Kato, R. Okazaki, C.J. van der Beek, M. Konczykowski, H. Takeya, K. Hirata, T. Terashima, and Y. Matsuda, Phys. Rev. Lett. 102, 207001 (2009). 13. J.S. Bobowski, J.C. Baglo, J. Day, P. Dosanjh, R. Ofer, B.J. Ramshaw, R. Liang, D.A. Bonn, W.N. Hardy, H. Luo, Z.-S. Wang, L. Fang, and H.-H. Wen, Phys. Rev. B 82, 094520 (2010). 14. H. Takahashi, Y. Imai, S. Komiya, I. Tsukada, and A. Maeda, Phys. Rev. B 84, 132503 (2011). 15. A.A. Barannik, N.T. Cherpak, N. Ni, M.A. Tanatar, S.A. Vitusevich, V.N. Skresanov, P.C. Canfield, R. Prozorov, V.V. Glamazdin, and K.I. Torokhtii, Fiz. Nizk. Temp. 37, 912 (2011) [Low Temp. Phys. 37, 725 (2011)]. 16. R. Valdes Aguilar, L.S. Bilbro, S. Lee, C.W. Bark, J. Jiang, J.D. Weiss, E.E. Hellstrom, D.C. Larbalestier, C.B. Eom, and N.P. Armitage, Phys. Rev. B 82, 180514 (2010). 17. T. Fischer, A.V. Pronin, J. Wosnitza, K. Iida, F. Kurth, S. Haindl, L. Schultz, B. Holzapfel, and E. Schachinger, Phys. Rev. B 82, 224507 (2010). 18. L. Taillefer, Annu. Rev. Condens. Matter Phys. 1, 51 (2010). 19. D.A. Bonn and W.N. Hardy, Chapter 2, Microwave Surface Impedance of High Superconductors, In a book Physical Properties of High Temperature Superconductors, M. Ginsberg (ed.), World Scientific (1996). 20. R. Harris, P.J. Turner, Saeid Kamal, A.R. Hosseini, P. Dosanjh, G.K. Mullins, J.S. Bobowski, C.P. Bidinosti, D.M. Broun, Ruixing Liang, W.N. Hardy, and D.A. Bonn, Phys. Rev. B 74, 104508 (2006). 21. L.D. Landau and E.M. Lifshitz, Electrodynamics of Continuous Media, Vol. 8, Pergamon Press, Oxford (1960). 22. N.T. Cherpak, A.A. Barannik, S.A. Bunyaev, Y.V. Prokopenko, K.I. Torokhtii, and S.A. Vitusevich, IEEE Trans. on Appl. Supercond. 21, 591 (2011). 23. J.R. Waldram, P. Theopistou, A. Porch, and H.-M. Cheah, Phys. Rev. B 55, 3222 (1997). 24. E. Schachinger and J.P. Carbotte, Phys. Rev. B 80, 174526 (2009). 25. A. Barannik, N.T. Cherpak, M.A. Tanatar, S. Vitusevich, V. Skresanov, P.C. Canfield, and R. Prozorov, Phys. Rev. B 87, 014506 (2013).