Low-temperature phase segregation in La₂/₃Ba₁/₃MnO₃: Manifestation of nonequilibrium thermodynamics

Thermodynamic characteristics of the perovskite-like compound La₂/₃Ba₁/₃MnO₃ exhibiting structural phase transformation of the martensitic type with characteristic temperature Ts = 200 K have been studied in the temperature range 2–340 K. Step-like hysteretic temperature behavior of the effective...

Full description

Saved in:
Bibliographic Details
Date:2009
Main Authors: Beznosov, A.B., Fertman, E.L., Desnenko, V.A., Feher, A., Kajòaková, M., Ritter, C., Khalyavin, D.
Format: Article
Language:English
Published: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2009
Series:Физика низких температур
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/118970
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Low-temperature phase segregation in La₂/₃Ba₁/₃MnO₃: Manifestation of nonequilibrium thermodynamics / A.B. Beznosov, E.L. Fertman, V.A. Desnenko, A. Feher,M. Kajòaková, C. Ritter, D. Khalyavin // Физика низких температур. — 2009. — Т. 35, № 6. — С. 571–577. — Бібліогр.: 31 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:Thermodynamic characteristics of the perovskite-like compound La₂/₃Ba₁/₃MnO₃ exhibiting structural phase transformation of the martensitic type with characteristic temperature Ts = 200 K have been studied in the temperature range 2–340 K. Step-like hysteretic temperature behavior of the effective heat capacity has been revealed at 150–250 K and attributed to the discrete kinetics and a latent heat of the martensitic transformation. Magnetic subsystem was found exhibiting magnetic glass state below 220 K and temperature hysteresis of the magnetic susceptibility brightly pronounced in the 40–100 K and 180–230 K regions. The Debye and Einstein temperatures, Ѳ D = 230 K and Ѳ E = 500 K, respectively, derived from the experimental Debye–Waller factors for La/Ba, Mn and O sublattices, have been used to refine contributions from the structural and magnetic transformations to the heat capacity and to reveal thermodynamically nonequilibrium states.