To the statistic theory of dispersion of tensors of electric conductivity and dielectric susceptibility of electrolyte solutions

We have obtained an equation describing space-time behaviour of the current density component by using kinetic equation for one-particle distribution function for the structural units of the solution with the generalized Vlasov potential. The analytic expression for the complex tensor of electroco...

Full description

Saved in:
Bibliographic Details
Date:2004
Main Authors: Odinaev, S., Ojimamadov, I.
Format: Article
Language:English
Published: Інститут фізики конденсованих систем НАН України 2004
Series:Condensed Matter Physics
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/119019
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:To the statistic theory of dispersion of tensors of electric conductivity and dielectric susceptibility of electrolyte solutions / S. Odinaev, I. Ojimamadov // Condensed Matter Physics. — 2004. — Т. 7, № 4(40). — С. 735–740. — Бібліогр.: 8 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-119019
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1190192025-06-03T16:27:05Z To the statistic theory of dispersion of tensors of electric conductivity and dielectric susceptibility of electrolyte solutions До статистичної теорії дисперсії тензорів електропровідності і діелектричної сприйнятливості розчинів електролітів Odinaev, S. Ojimamadov, I. We have obtained an equation describing space-time behaviour of the current density component by using kinetic equation for one-particle distribution function for the structural units of the solution with the generalized Vlasov potential. The analytic expression for the complex tensor of electroconductivity σ(ω) is given derived from the Fourier-transform and from the comparison with the differential form of the Ohm’s law. This permitted us to obtain the dielectric susceptibility tensor ε(ω) for conducting media. By identifying the longitudal εk and transversal ε⊥ parts one can determine the anisotropy of the dielectric susceptibility for electrolyte solutions. Отримано рівняння, яке описує просторово-часову поведінку компоненти густини струму, використовуючи кінетичне рівняння для одночастинкової функції розподілу структурних компонент розчину з узагальненим потенціалом Власова. Представлено аналітичний вираз для комплексного тензора електропровідності σ(ω) , який виведений з Фур’є-перетворення і з диференціальної форми закону Ома. Це дало змогу отримати тензор діелектричної сприйнятливості ε(ω) для провідного середовища. Виділяючи поздовжню εk і поперечну ε⊥ частини можна визначити анізотропію діелектричної сприйнятливості для електричних розчинів. 2004 Article To the statistic theory of dispersion of tensors of electric conductivity and dielectric susceptibility of electrolyte solutions / S. Odinaev, I. Ojimamadov // Condensed Matter Physics. — 2004. — Т. 7, № 4(40). — С. 735–740. — Бібліогр.: 8 назв. — англ. 1607-324X DOI:10.5488/CMP.7.4.735 PACS: 61.20.Qg, 51.10.+y https://nasplib.isofts.kiev.ua/handle/123456789/119019 en Condensed Matter Physics application/pdf Інститут фізики конденсованих систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description We have obtained an equation describing space-time behaviour of the current density component by using kinetic equation for one-particle distribution function for the structural units of the solution with the generalized Vlasov potential. The analytic expression for the complex tensor of electroconductivity σ(ω) is given derived from the Fourier-transform and from the comparison with the differential form of the Ohm’s law. This permitted us to obtain the dielectric susceptibility tensor ε(ω) for conducting media. By identifying the longitudal εk and transversal ε⊥ parts one can determine the anisotropy of the dielectric susceptibility for electrolyte solutions.
format Article
author Odinaev, S.
Ojimamadov, I.
spellingShingle Odinaev, S.
Ojimamadov, I.
To the statistic theory of dispersion of tensors of electric conductivity and dielectric susceptibility of electrolyte solutions
Condensed Matter Physics
author_facet Odinaev, S.
Ojimamadov, I.
author_sort Odinaev, S.
title To the statistic theory of dispersion of tensors of electric conductivity and dielectric susceptibility of electrolyte solutions
title_short To the statistic theory of dispersion of tensors of electric conductivity and dielectric susceptibility of electrolyte solutions
title_full To the statistic theory of dispersion of tensors of electric conductivity and dielectric susceptibility of electrolyte solutions
title_fullStr To the statistic theory of dispersion of tensors of electric conductivity and dielectric susceptibility of electrolyte solutions
title_full_unstemmed To the statistic theory of dispersion of tensors of electric conductivity and dielectric susceptibility of electrolyte solutions
title_sort to the statistic theory of dispersion of tensors of electric conductivity and dielectric susceptibility of electrolyte solutions
publisher Інститут фізики конденсованих систем НАН України
publishDate 2004
url https://nasplib.isofts.kiev.ua/handle/123456789/119019
citation_txt To the statistic theory of dispersion of tensors of electric conductivity and dielectric susceptibility of electrolyte solutions / S. Odinaev, I. Ojimamadov // Condensed Matter Physics. — 2004. — Т. 7, № 4(40). — С. 735–740. — Бібліогр.: 8 назв. — англ.
series Condensed Matter Physics
work_keys_str_mv AT odinaevs tothestatistictheoryofdispersionoftensorsofelectricconductivityanddielectricsusceptibilityofelectrolytesolutions
AT ojimamadovi tothestatistictheoryofdispersionoftensorsofelectricconductivityanddielectricsusceptibilityofelectrolytesolutions
AT odinaevs dostatističnoíteoríídispersíítenzorívelektroprovídnostíídíelektričnoíspriinâtlivostírozčinívelektrolítív
AT ojimamadovi dostatističnoíteoríídispersíítenzorívelektroprovídnostíídíelektričnoíspriinâtlivostírozčinívelektrolítív
first_indexed 2025-12-02T09:05:52Z
last_indexed 2025-12-02T09:05:52Z
_version_ 1850386785655324672
fulltext Condensed Matter Physics, 2004, Vol. 7, No. 4(40), pp. 735–740 To the statistic theory of dispersion of tensors of electric conductivity and dielectric susceptibility of electrolyte solutions S.Odinaev 1 ∗, I.Ojimamadov 2 1 Physics-Technical Institute, Academy of Sciences, Republic of Tajikistan, 299/1 Aini Ave, Dushanbe, 734063 2 M.S.Osimi Tajik Technical University, Akad. Rajabovs Str., 10, Dushanbe 734042, Republic of Tajikistan Received April 28, 2004 We have obtained an equation describing space-time behaviour of the cur- rent density component by using kinetic equation for one-particle distri- bution function for the structural units of the solution with the generalized Vlasov potential. The analytic expression for the complex tensor of electroconductivity σ(ω) is given derived from the Fourier-transform and from the comparison with the differential form of the Ohm’s law. This permitted us to obtain the di- electric susceptibility tensor ε(ω) for conducting media. By identifying the longitudal ε‖ and transversal ε⊥ parts one can determine the anisotropy of the dielectric susceptibility for electrolyte solutions. Key words: kinetic equation, distribution functions, frequency dispersion, dielectric susceptibility tensor, electric conductivity tensor PACS: 61.20.Qg, 51.10.+y 1. Introduction Rather high accuracy and easiness of measurement of electroconductivity has long attracted the efforts of numerous researchers who have gathered enormous experimental material. However theoretical research of electroconductivity of elec- trolyte solutions is one of the most complicated and difficult questions of physics of liquid state. Research of irreversible processes in electrolyte solutions, in particular of electroconductivity, belongs to Onsager. Generalization on the cases of conduc- tivity of an alternating current was carried out by Debye and Falkenhagen. Further ∗E-mail: ods@ttu.tajik.net c© S.Odinaev, I.Ojimamadov 735 S.Odinaev, I.Ojimamadov development of the theory of electroconductivity, based on the use of nonequilibri- um multiparticle distribution functions, is presented in works [1–3]. Undoubtedly, the possibility to determine dynamic coefficients of electroconductivity and dielec- tric susceptibility is of great interest. Thus, the purpose of the present work is to determine these parameters as well as the appropriate modules of elasticity in view of anisotropy depending on constituents, structure of solution and thermodynamic parameters based on the molecular-kinetic theory. First of all we accept the kinetic equation for one-particle distribution function fa(~χa, t) of a type structural units of electrolyte solutions with generalized Vlasov potential [4]: ∂fa ∂t + pα a ma · ∂fa ∂qα 1 + eaE α(~q1, t) ∂fa ∂pα a + Fα a (~q1, t) ∂f 0 a ∂pα a = Ic(fa), (1) where Fα a (~q1, t) = ∑ b ∫ { Fα ab(l)δ(t − τ) − Ωe−Ω(t−τ)(Fα ab(l) − Fα ab(c)) + e−Ω(t−τ)Fα ab(el) } dτ, (2) Ic(fa) = βa ∂ ∂pα a [ p̃α a ma fa + kT (~q1, t) · ∂fa ∂pα a ] , (3) Fα ab(`) = nb ∫ ∂2Φab ∂r2 · rαrβ r2 go ab(r) ( Uβ(~q2, t) − Uβ(~q1, t) ) d~r, Fα ab(c) = nb ∫ ∂2Kab ∂r2 · rαrβ r2 ( Uβ(~q2, t) − Uβ(~q1, t) ) d~r, Fα ab(e`) = nb ( eb βb − ea βa ) · ∫ ∂2Φab ∂r2 · rαrβ r2 go ab(r)d~r · Eβ(~q1, t), Kα ab(r) = |~q2−~q1| ∫ −∞ ∂Φab(y) ∂y · Zab(y)dy, ~r = ~q2 − ~q1, Zab(y) = [ no ( ∂go ab(r) ∂no ) T + γTo ( ∂go ab(r) ∂To ) n ] , γ = 1 noCv ( ∂Po ∂To ) no , ~xa = ( ⇀→ qa, −→p a), f o a (pa) = na(2πmkT0) −3/2 exp(−p2 a/2makT0) – is equilibrium Maxwell distribution function; ma , ~qa , ~pa – are mass, coordinate and momentum of particles of a type, respectively, p̃α a = pα a −maυ α(~q1, t) – is relative momentum, ea = zae , eb = zbe , e – is an elementary charge; za , zb , βa , βb – are valency and friction coefficients of particles of a and b types, respectively, Eα(~q1, t) – are the components of electric field, Φab(|~r|) – is the potential energy of interaction between the structural units of solution, and 736 To the statistic theory of dispersion of tensors g0 ab(r) – is radial distribution function, describing equilibrium structure of solution, which according to [5], we consider as known, ~Ua(~q, t) – is displacement vector of particles of a type, Ω = Ωab = τ−1 ab = (kT/d2 ab) · (1/βa + 1/βb) is phenomenological frequency of structural relaxation, k is Boltzman’s constant, dab = 1/2(da +db) , da , db – are diameters of structural units of solutions of a and b types. Right-hand side of the equation (1), i.e. Ic(fa) is the collision Fokker-Plank term, which is derived in the approximation of pair interactions. It provides irreversibility of the initial equation in time, i.e. the possibility to describe the dissipation processes in solutions. For convenience, let us put the coordinates of particles ~qa = ~q1 , ~qb = ~q2 , ~qc = ~q3 and so on. It should be mentioned that particles of the solution interact by the potential Φab(|~r|, Ωs), which consists of the sum of the energy of inter-ionic (kations and anions) Φij , ion-molecular Φis and Φjs , and intermolecular Φss interactions. Here Ωs = (υs, αs) – are polar angles describing the orientation of the dipole around the axis, connecting mass centers of interacting particles. Let us use the definitions of pulse moments of the function fa(~xa, t) according to [6] and introduce the vector of density of current ~j(~q, t) : ρa(~q1, t) = eana(~q1, t) = ea ∫ fa(~xa, t)d~pa , ρaυ α a (~q1, t) = ea ∫ pα a ma fa(~xa, t)d~pa , Kαβ aa (~q1, t) = ∫ p̃α a p̃β a ma fa(~xa, t)d~pa , ~j(~q1, t) = ∑ a ~ja(~q1, t) = ∑ a ρa(~υa − ~υ(~q1, t)), (4) as well as conditions of electroneutrality ∑ a eana = e ∑ a zana = 0, where ρa , υα a , Kαβ aa – are volumetric density of charge, components of average speed and kinetic part of the tensor of flow of momentum of particles of a type, respectively. Using the method of pulse moments of one-particle distribution function fa(~xa, t) , multiplying equation (1) by (eap α a )/ma and integrating by d~pa , taking into account equations (2)–(4), we derive for the components of the vector of density of current jα a (~q1, t) , the following equation: ∂jα a (~q1, t) ∂t + νaj α a = n0 ae 2 a ma [ Eα(~q1, t) − ∑ b 1 ea ∫ ~e Ω(t−τ)Fα ab(el)dτ ] , (5) where νa = τ−1 a = βa/ma . 737 S.Odinaev, I.Ojimamadov Performing Fourier-transformation by time in (5) and solving it in regard to jα a (ω, ~q) , for the components of the vector of density of current jα(ω) = ∑ a jα a (ω, ~q1), we receive jα(ω) = ∑ a n0 ae 2 a/βa 1 − iωτa [ δαβ + ∑ b τcG αβ el (0)/ea 1 − iωτc ] Eβ(ω), (6) where Gαβ el (0) = n0 b ( eb βb − ea βa ) dab ∫ ∂2Φab ∂r2 · r2rβ r2 g0 ab(r)d~r. (7) Comparing (6) with the Fourier-image of the differential form of Ohm law, for complex tensor of electroconductivity σ̃αβ(ω) we have: σ̃αβ(ω) = ∑ a nb ae 2 a/βa 1 − iωτa [ δαβ + ∑ b τc · G αβ el (0) ea(1 − iωτc) ] . (8) As to each process of transition in hydrodynamic mode, the certain elastic prop- erties in a high-frequency mode will correspond. Further, according to [6] we shall introduce the complex tensor of electroelasticity module: ∈̃ αβ (ω) = −iωσ̃αβ (ω) =∈αβ (ω) − iωσαβ (ω) , (9) where the real part ∈αβ (ω)− is the dynamic tensor of electroelasticity module, and imaginary part σαβ (ω)− is the dynamic tensor of electroconductivity. Substituting (8) into (9), and dividing real and imaginary parts for ∈αβ (ω) and σαβ (ω) , we receive: ∈αβ (ω) = ∑ a ∈0 a [ (ωτ̂a) 2δαβ + ω2τ̂aτ̂c(τa + τc) ∑ b Gαβ el ea ] , σαβ (ω) = ∑ a ∈0 a [ τ̂aδ αβ + τ̂aτ̂c(1 − ω2τaτc) ∑ b Gαβ el ea ] , (10) where τ̂a = τa 1 + (ωτa) 2 , τ̂c = τc 1 + (ωτc) 2 , ∈0 a= n0 ae 2/ma , τ and τc is time of translational and structural relaxation, respecti- vely. The expressions in system (10) describe the frequency dispersion of electroelas- tic modules and coefficients of electroconductivity in a wide interval of variations of thermodynamic parameters and frequencies of external action. In these expressi- ons the frequency dependence is caused by contributions of both translational and structural relaxation. Potential parts of these coefficients contain the integral terms which are defined by means of energy of interaction of structural units of the solution Φab(r) and equilibrium radial distribution function g0 ab(r) . At a certain choice of the model of solution, according to [5], the latter could be considered as known. Debye 738 To the statistic theory of dispersion of tensors and Falkengagen [7], being restricted by the real part of electroconductivity, investi- gated frequency dispersion electroconductivity of electrolyte solutions. The second equation of the system (10) is the generalization of the effect of Debye-Falkenhagen for electrolyte solutions, the frequency behaviour of which coincides with the results of general relaxation theories. Formulas of the system (10) make it possible to in- vestigate the asymptotic behaviour of these expressions both in hydrodynamic and in high-frequency mode and correspond to the general conclusions of the statistical theory of electroelastic properties of solutions. At low frequencies (hydrodynamic mode ω → 0) expressions (10) describe elec- troconductivity properties of solutions, and at fast processes (high-frequency mode ω → ∞) – only the elastic properties could be described. Expressions (10) also permit to investigate dispersion of dielectric susceptibility of solutions. Following paper [8], it is also possible to determine a frequency dis- persion of tensor of dielectric susceptibility ε̃αβ (ω) for conducting media, which is connected to conductivity tensor σ̃αβ (ω) by the ratio ε̃αβ (ω) = δαβ + i ε0ω σ̃αβ(ω). (11) The latter enables one to determine longitudinal σ‖, ε‖ and transversal σ⊥, ε⊥ components of these coefficients, as well as based on the Maxwell equations, to determine the longitudinal ~E‖ ( ω,~k ) and transversal ~E⊥ ( ω,~k ) parts of the vector of electric field ~E ( ω,~k ) with regard to its wave vector ~k in electrolyte solutions, which is the purpose of the further research. References 1. Ebeling W., Feistel R., Kelbg G., Sanding R. Generalizations of Onsagers semi phe- nomenological theory of electrolytic conductance. // J. non-equilibr. thermodlyn., 1978, vol. 3, No. 1, p. 11–28. 2. Sänding R. Theory of linear vectors transport processes in binary isothermal elec- trolyte solutions. // Z. Phys. Chem. (DDR), 1984, vol. 265, No. 4, p. 663–680. 3. Lessner G. The electric conductivity of stationary and homogenous electrolytes up to concentration C = 1 mol/L and high electric fields. // Physica A, 1982, vol. 116, No. 1–2, p. 272–288; Physica A, 1983, vol. 122, No. 3, p. 441–458. 4. Odinaev S., Ojimamadov I. About one kinetic equation with generalized Vlasov’s potential. – In: Int. conf. PLMMP, abstracts. Kyiv, September 14–19, 2001, p. 35. 5. Yukhnovsky I.R., Holovko M.F. Statistic Theory of Classical Equilibrium Systems. Kiyv, Naukova Dumka, 1980, p. 372, (in Russian). 6. Odinaev S., Adkhamov A.A. Molecular Theory of Structural Relaxation and Transi- tion Phenomena in Liquids. Dushanbe, Donish, 1998, p. 230, (in Russian). 7. New issues of contemporary electrochemistry, (ed. J.M.Bokris). Moscow, Inostrannaya literature, 1962, p. 462, (in Russian). 8. Klimontovich Yu.Ya. Statistic Theory of Non-Equilibrium Phenomena in Plasmas. Moscow, Moscow State University Publisher, 1964, p. 281, (in Russian). 739 S.Odinaev, I.Ojimamadov До статистичної теорії дисперсії тензорів електропровідності і діелектричної сприйнятливості розчинів електролітів С.Одінаєв 1 , І.Оджімамадов 2 1 Фізико-технічний інститут, Академія наук, Душанбе, Республіка Таджикистан 2 Таджицький технічний університет ім. М.С.Осімі, Душанбе, Республіка Таджикистан Отримано 28 квітня 2004 р. Отримано рівняння, яке описує просторово-часову поведінку ком- поненти густини струму, використовуючи кінетичне рівняння для одночастинкової функції розподілу структурних компонент розчину з узагальненим потенціалом Власова. Представлено аналітичний вираз для комплексного тензора елек- тропровідності σ(ω) , який виведений з Фур’є-перетворення і з диференціальної форми закону Ома. Це дало змогу отримати тензор діелектричної сприйнятливості ε(ω) для провідного сере- довища. Виділяючи поздовжню ε‖ і поперечну ε⊥ частини можна визначити анізотропію діелектричної сприйнятливості для елек- тричних розчинів. Ключові слова: кінетичне рівняння, функції розподілу, частотна дисперсія, тензор діелектричної сприйнятливості, тензор електропровідності PACS: 61.20.Qg, 51.10.+y 740