Низкотемпературные микромеханические свойства отожженного и гидроэкструдированного сплава Al–3,8 ат.% Li

Методом микроиндентирования изучено структурное состояние исходных крупнозернистых (КЗ) и экструдированных ультрамелкозернистых (УМЗ) заготовок твердого раствора замещения Al–3,8 ат. % Li, а также образцов этого сплава, деформированных растяжением до разрушения при температурах 4,2, 77, 295 и 350 К,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Физика низких температур
Datum:2014
Hauptverfasser: Русакова, А.В., Лубенец, С.В., Фоменко, Л.С., Забродин, П.А.
Format: Artikel
Sprache:Russian
Veröffentlicht: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2014
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/119490
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Низкотемпературные микромеханические свойства отожженного и гидроэкструдированного сплава Al–3,8 ат.% Li / А.В. Русакова, С.В. Лубенец, Л.С. Фоменко, П.А. Забродин // Физика низких температур. — 2014. — Т. 40, № 3. — С. 330-339. — Бібліогр.: 36 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-119490
record_format dspace
spelling Русакова, А.В.
Лубенец, С.В.
Фоменко, Л.С.
Забродин, П.А.
2017-06-07T05:03:36Z
2017-06-07T05:03:36Z
2014
Низкотемпературные микромеханические свойства отожженного и гидроэкструдированного сплава Al–3,8 ат.% Li / А.В. Русакова, С.В. Лубенец, Л.С. Фоменко, П.А. Забродин // Физика низких температур. — 2014. — Т. 40, № 3. — С. 330-339. — Бібліогр.: 36 назв. — рос.
0132-6414
PACS 81.40.Ef, 62.20.Qp, 68.35.Gy
https://nasplib.isofts.kiev.ua/handle/123456789/119490
Методом микроиндентирования изучено структурное состояние исходных крупнозернистых (КЗ) и экструдированных ультрамелкозернистых (УМЗ) заготовок твердого раствора замещения Al–3,8 ат. % Li, а также образцов этого сплава, деформированных растяжением до разрушения при температурах 4,2, 77, 295 и 350 К, исследована зависимость микротвердости КЗ и УМЗ образцов от температуры в интервале 77–295 К. Измерения выявили анизотропию микромеханических свойств УМЗ образцов, которая является следствием текстуры, сформированной в процессе экструзии. Показано, что в образцах, деформированных растяжением до разрушения, наблюдается корреляция между значением микротвердости как меры локального деформационного упрочнения и величиной локального пластического сдвига. В случае УМЗ образцов, деформированных при температурах 295 и 350 К, эта корреляция нарушается — микротвердость не зависит от степени пластического сдвига. Температурные зависимости микротвердости КЗ и УМЗ образцов проанализированы в рамках представлений о термоактивированном движении дислокаций через сетку локальных препятствий. Наиболее вероятными потенциальными барьерами для движения дислокаций в изученном сплаве являются атомы примеси, их небольшие комплексы и дислокации леса. Интенсивная пластическая деформация в процессе гидроэкструзии качественно не повлияла на энергетические параметры спектра препятствий.
Методом мікроіндентування вивчено структурний стан вихідних крупнозернистих (КЗ) та екструдованих ультрадрібнозернистих (УДЗ) заготівок твердого розчину заміщення Al–3,8 ат.% Li, а також зразків цього сплаву, які деформовано розтягненням до руйнування при температурах 4,2, 77, 295 та 350 К, досліджено залежність мікротвердості КЗ і УДЗ зразків від температури в інтервалі 77–295 К. Вимірювання виявили анізотропію мікромеханічних властивостей УДЗ зразків, яка є наслідком текстури, що сформувалась в процесі екструзії. Показано, що у зразках, які деформовано розтягненням до руйнування, спостерігається кореляція між значенням мікротвердості як міри локального деформаційного зміцнення та величиною локального пластичного зсуву. У випадку УДЗ зразків, які деформовано при температурах 295 та 350 К, ця кореляція порушується — мікротвердість не залежить від ступеня пластичного зсуву. Температурні залежності мікротвердості КЗ і УДЗ зразків проаналізовано в межах уявлень про термоактивований рух дислокацій через сітку локальних перешкод. Найбільш вірогідними потенціальними бар’єрами для руху дислокацій у вивченому сплаві є атоми домішки, їх невеликі комплекси та дислокації лісу. Інтенсивна пластична деформація у процесі гідроекструзії якісно не вплинула на енергетичні параметри спектра перешкод.
The structural state of as-received course-grained (CG) and extruded ultrafine-grained (UFG) stocks of the Al–3.8 at.% Li substitution solid solution and the samples of this alloy deformed in tension to failure at the temperatures of 4.2, 77, 295 and 350 K was studied by the microindentation method. The temperature dependence of microhardness was investigated in the range of 77 to 295 K. The measurements have revealed anisotropy of the micromechanical properties of the UFG samples which appears to be due to the texture formed during extrusion. The results reported herein revealed that in the specimens deformed by uniaxial tension to failure there was correlation between microhardness value as a measure of work hardening and magnitude of local plastic shear. The correlation breaks down for the UFG samples deformed at the temperatures of 295 and 350 K — microhardness does not depend on the amount of plastic shear. The temperature dependences of microhardness of the CG and UFG samples were analyzed in the framework of thermally activated motion of dislocations in the local obstacles array. The most probable potential barriers to the dislocation motion in the alloy studied are the impurity atoms, their small complexes and forest dislocations. Intensive plastic deformation during hydrostatic extrusion had no qualitatively effect on the energetic parameters of the obstacle spectrum.
Авторы выражают благодарность Н.В. Исаеву и В.Д. Нацику за внимательное прочтение рукописи и полезные замечания.
ru
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
Физика низких температур
Низкотемпературная физика пластичности и прочности
Низкотемпературные микромеханические свойства отожженного и гидроэкструдированного сплава Al–3,8 ат.% Li
Low-temperature micromechanical properties of annealed and hydrostatic extruded Al–3.8 аt.% Li alloy
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Низкотемпературные микромеханические свойства отожженного и гидроэкструдированного сплава Al–3,8 ат.% Li
spellingShingle Низкотемпературные микромеханические свойства отожженного и гидроэкструдированного сплава Al–3,8 ат.% Li
Русакова, А.В.
Лубенец, С.В.
Фоменко, Л.С.
Забродин, П.А.
Низкотемпературная физика пластичности и прочности
title_short Низкотемпературные микромеханические свойства отожженного и гидроэкструдированного сплава Al–3,8 ат.% Li
title_full Низкотемпературные микромеханические свойства отожженного и гидроэкструдированного сплава Al–3,8 ат.% Li
title_fullStr Низкотемпературные микромеханические свойства отожженного и гидроэкструдированного сплава Al–3,8 ат.% Li
title_full_unstemmed Низкотемпературные микромеханические свойства отожженного и гидроэкструдированного сплава Al–3,8 ат.% Li
title_sort низкотемпературные микромеханические свойства отожженного и гидроэкструдированного сплава al–3,8 ат.% li
author Русакова, А.В.
Лубенец, С.В.
Фоменко, Л.С.
Забродин, П.А.
author_facet Русакова, А.В.
Лубенец, С.В.
Фоменко, Л.С.
Забродин, П.А.
topic Низкотемпературная физика пластичности и прочности
topic_facet Низкотемпературная физика пластичности и прочности
publishDate 2014
language Russian
container_title Физика низких температур
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
format Article
title_alt Low-temperature micromechanical properties of annealed and hydrostatic extruded Al–3.8 аt.% Li alloy
description Методом микроиндентирования изучено структурное состояние исходных крупнозернистых (КЗ) и экструдированных ультрамелкозернистых (УМЗ) заготовок твердого раствора замещения Al–3,8 ат. % Li, а также образцов этого сплава, деформированных растяжением до разрушения при температурах 4,2, 77, 295 и 350 К, исследована зависимость микротвердости КЗ и УМЗ образцов от температуры в интервале 77–295 К. Измерения выявили анизотропию микромеханических свойств УМЗ образцов, которая является следствием текстуры, сформированной в процессе экструзии. Показано, что в образцах, деформированных растяжением до разрушения, наблюдается корреляция между значением микротвердости как меры локального деформационного упрочнения и величиной локального пластического сдвига. В случае УМЗ образцов, деформированных при температурах 295 и 350 К, эта корреляция нарушается — микротвердость не зависит от степени пластического сдвига. Температурные зависимости микротвердости КЗ и УМЗ образцов проанализированы в рамках представлений о термоактивированном движении дислокаций через сетку локальных препятствий. Наиболее вероятными потенциальными барьерами для движения дислокаций в изученном сплаве являются атомы примеси, их небольшие комплексы и дислокации леса. Интенсивная пластическая деформация в процессе гидроэкструзии качественно не повлияла на энергетические параметры спектра препятствий. Методом мікроіндентування вивчено структурний стан вихідних крупнозернистих (КЗ) та екструдованих ультрадрібнозернистих (УДЗ) заготівок твердого розчину заміщення Al–3,8 ат.% Li, а також зразків цього сплаву, які деформовано розтягненням до руйнування при температурах 4,2, 77, 295 та 350 К, досліджено залежність мікротвердості КЗ і УДЗ зразків від температури в інтервалі 77–295 К. Вимірювання виявили анізотропію мікромеханічних властивостей УДЗ зразків, яка є наслідком текстури, що сформувалась в процесі екструзії. Показано, що у зразках, які деформовано розтягненням до руйнування, спостерігається кореляція між значенням мікротвердості як міри локального деформаційного зміцнення та величиною локального пластичного зсуву. У випадку УДЗ зразків, які деформовано при температурах 295 та 350 К, ця кореляція порушується — мікротвердість не залежить від ступеня пластичного зсуву. Температурні залежності мікротвердості КЗ і УДЗ зразків проаналізовано в межах уявлень про термоактивований рух дислокацій через сітку локальних перешкод. Найбільш вірогідними потенціальними бар’єрами для руху дислокацій у вивченому сплаві є атоми домішки, їх невеликі комплекси та дислокації лісу. Інтенсивна пластична деформація у процесі гідроекструзії якісно не вплинула на енергетичні параметри спектра перешкод. The structural state of as-received course-grained (CG) and extruded ultrafine-grained (UFG) stocks of the Al–3.8 at.% Li substitution solid solution and the samples of this alloy deformed in tension to failure at the temperatures of 4.2, 77, 295 and 350 K was studied by the microindentation method. The temperature dependence of microhardness was investigated in the range of 77 to 295 K. The measurements have revealed anisotropy of the micromechanical properties of the UFG samples which appears to be due to the texture formed during extrusion. The results reported herein revealed that in the specimens deformed by uniaxial tension to failure there was correlation between microhardness value as a measure of work hardening and magnitude of local plastic shear. The correlation breaks down for the UFG samples deformed at the temperatures of 295 and 350 K — microhardness does not depend on the amount of plastic shear. The temperature dependences of microhardness of the CG and UFG samples were analyzed in the framework of thermally activated motion of dislocations in the local obstacles array. The most probable potential barriers to the dislocation motion in the alloy studied are the impurity atoms, their small complexes and forest dislocations. Intensive plastic deformation during hydrostatic extrusion had no qualitatively effect on the energetic parameters of the obstacle spectrum.
issn 0132-6414
url https://nasplib.isofts.kiev.ua/handle/123456789/119490
citation_txt Низкотемпературные микромеханические свойства отожженного и гидроэкструдированного сплава Al–3,8 ат.% Li / А.В. Русакова, С.В. Лубенец, Л.С. Фоменко, П.А. Забродин // Физика низких температур. — 2014. — Т. 40, № 3. — С. 330-339. — Бібліогр.: 36 назв. — рос.
work_keys_str_mv AT rusakovaav nizkotemperaturnyemikromehaničeskiesvoistvaotožžennogoigidroékstrudirovannogosplavaal38atli
AT lubenecsv nizkotemperaturnyemikromehaničeskiesvoistvaotožžennogoigidroékstrudirovannogosplavaal38atli
AT fomenkols nizkotemperaturnyemikromehaničeskiesvoistvaotožžennogoigidroékstrudirovannogosplavaal38atli
AT zabrodinpa nizkotemperaturnyemikromehaničeskiesvoistvaotožžennogoigidroékstrudirovannogosplavaal38atli
AT rusakovaav lowtemperaturemicromechanicalpropertiesofannealedandhydrostaticextrudedal38atlialloy
AT lubenecsv lowtemperaturemicromechanicalpropertiesofannealedandhydrostaticextrudedal38atlialloy
AT fomenkols lowtemperaturemicromechanicalpropertiesofannealedandhydrostaticextrudedal38atlialloy
AT zabrodinpa lowtemperaturemicromechanicalpropertiesofannealedandhydrostaticextrudedal38atlialloy
first_indexed 2025-12-07T19:25:28Z
last_indexed 2025-12-07T19:25:28Z
_version_ 1850878751760449536