Electronic structure and x-ray magnetic circular dichroism in the Mn₃CuN perovskite
The electronic and magnetic structures of Mn₃CuN are investigated theoretically from first principles using the fully relativistic Dirac LMTO band structure method. Mn₃CuN possesses a magnetic phase transition at TC = 143 K from a high temperature paramagnetic phase to a low temperature ferromagneti...
Saved in:
| Published in: | Физика низких температур |
|---|---|
| Date: | 2014 |
| Main Authors: | , |
| Format: | Article |
| Language: | English |
| Published: |
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
2014
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/119539 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Electronic structure and x-ray magnetic circular dichroism in the Mn₃CuN perovskite / V.N. Antonov, L.V. Bekenov // Физика низких температур. — 2014. — Т. 40, № 7. — С. 825-834. — Бібліогр.: 66 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Summary: | The electronic and magnetic structures of Mn₃CuN are investigated theoretically from first principles using the fully relativistic Dirac LMTO band structure method. Mn₃CuN possesses a magnetic phase transition at TC = 143 K from a high temperature paramagnetic phase to a low temperature ferromagnetic one with a noncollinear magnetic structure. The transition is accompanied by a structural change from the cubic to the tetragonal lattice. In low temperature phase two Cu moments and two Mn moments (Mn₂ and Mn₃) ferromagnetically align along the c axis while other four Mn1 magnetic moments are canted from the c axis to [111] direction by angle Q= ±76.2. The x-ray absorption spectra and x-ray magnetic circular dichroism (XMCD) spectra of Mn₃CuN are investigated theoretically from first principles. The origin of the XMCD spectra in the Mn₃CuN compound is examined. The calculated results are compared with the experimental data.
|
|---|---|
| ISSN: | 0132-6414 |