The role of angular momentum conservation law in statistical mechanics

Within the limits of Khinchin ideas [A.Y. Khinchin, Mathematical Foundation of Statistical Mechanics. NY, Ed. Dover, 1949] the importance of momentum and angular momentum conservation laws was analyzed for two cases: for uniform magnetic field and when magnetic field is absent. The law of momentum...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Condensed Matter Physics
Дата:2008
Автор: Dubrovskii, I.M.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2008
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/119572
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The role of angular momentum conservation law in statistical mechanics / I.M. Dubrovskii // Condensed Matter Physics. — 2008. — Т. 11, № 4(56). — С. 585-596. — Бібліогр.: 11 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-119572
record_format dspace
spelling Dubrovskii, I.M.
2017-06-07T12:48:41Z
2017-06-07T12:48:41Z
2008
The role of angular momentum conservation law in statistical mechanics / I.M. Dubrovskii // Condensed Matter Physics. — 2008. — Т. 11, № 4(56). — С. 585-596. — Бібліогр.: 11 назв. — англ.
1607-324X
PACS: 05.20.Gg, 75.20.-g
DOI:10.5488/CMP.11.4.585
https://nasplib.isofts.kiev.ua/handle/123456789/119572
Within the limits of Khinchin ideas [A.Y. Khinchin, Mathematical Foundation of Statistical Mechanics. NY, Ed. Dover, 1949] the importance of momentum and angular momentum conservation laws was analyzed for two cases: for uniform magnetic field and when magnetic field is absent. The law of momentum conservation does not change the density of probability distribution in both cases, just as it is assumed in the conventional theory. It is shown that in systems where the kinetic energy depends only on particle momenta canonically conjugated with Cartesian coordinates being their diagonal quadric form,the angular momentum conservation law changes the density of distribution of the system only in case the full angular momentum of a system is not equal to zero. In the gas of charged particles in a uniform magnetic field the density of distribution also varies if the angular momentum is zero [see Dubrovskii I.M., Condensed Matter Physics, 2206, 9, 23]. Twodimensional gas of charged particles located within a section of an endless strip filled with gas in magnetic field is considered. Under such conditions the angular momentum is not conserved. Directional particle ows take place close to the strip boundaries, and, as a consequence, the phase trajectory of the considered set of particles does not remain within the limited volume of the phase space. In order to apply a statistical thermodynamics method, it was suggested to consider near-boundary trajectories relative to a reference system that moves uniformly. It was shown that if the diameter of an orbit having average thermal energy is much smaller than a strip width, the corrections to thermodynamic functions are small depending on magnetic field. Only the average velocity of near-boundary particles that form near-boundary electric currents creating the paramagnetic moment turn out to be essential.
У рамках iдей Хiнчина [А.Я. Хинчин, Математические принципы статистической механики. ГИТТЛ, Москва-Ленинград, 1943] розглянуто закони збереження iмпульсу i кутового моменту у випадках присутностi або вiдсутностi магнiтного поля. Закон збереження iмпульсу не змiнює розподiлу густини ймовiрностi, як i передбачалося у загальноприйнятiй теорiї. Показано, що у системах, кiнетична енергiя яких залежить тiльки вiд iмпульсiв частинок, канонiчно спряжених декартовим координатам, i є дiагональною квадратичною формою, закон збереження кутового моменту змiнює розподiл густини ймовiрностi тiльки, якщо повний кутовий момент системи не дорiвнює нулю. Для газу заряджених частинок у магнiтному полi розподiл густини ймовiрностi змiнюється i у випадку нульового повного кутового моменту [Dubrovskii I.M., Condensed Matter Physics, 2206, 9, 23]. Розглянуто двовимiрний газ заряджених частинок, що знаходиться на вiдрiзку необмеженої смуги, у магнiтному полi. У цих умовах кутовий момент не зберiгається. Поблизу границь смуги iснують спрямованi потоки частинок, тому фазова траєкторiя газу, що розглядається, не залишається у обмеженiй областi фазового простору. Щоб застосувати до цього випадку метод статистичної механiки, запропоновано розглядати траєкторiї поблизу границь у системi вiдлiку, що рiвномiрно рухається. При цьому виявляється, що поправки до термодинамiчних функцiй, що залежать вiд магнiтного поля малi, якщо дiаметр орбiти з середньою термiчною енергiєю значно менший, нiж ширина смуги. Суттєва тiльки середня швидкiсть частинок, що вiдбиваються вiд границь. Цi частинки утворюють поблизу границь електричний струм, що породжує магнiтний момент.
en
Інститут фізики конденсованих систем НАН України
Condensed Matter Physics
The role of angular momentum conservation law in statistical mechanics
Роль закону збереження кутового моменту у статистичнiй механiцi
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title The role of angular momentum conservation law in statistical mechanics
spellingShingle The role of angular momentum conservation law in statistical mechanics
Dubrovskii, I.M.
title_short The role of angular momentum conservation law in statistical mechanics
title_full The role of angular momentum conservation law in statistical mechanics
title_fullStr The role of angular momentum conservation law in statistical mechanics
title_full_unstemmed The role of angular momentum conservation law in statistical mechanics
title_sort role of angular momentum conservation law in statistical mechanics
author Dubrovskii, I.M.
author_facet Dubrovskii, I.M.
publishDate 2008
language English
container_title Condensed Matter Physics
publisher Інститут фізики конденсованих систем НАН України
format Article
title_alt Роль закону збереження кутового моменту у статистичнiй механiцi
description Within the limits of Khinchin ideas [A.Y. Khinchin, Mathematical Foundation of Statistical Mechanics. NY, Ed. Dover, 1949] the importance of momentum and angular momentum conservation laws was analyzed for two cases: for uniform magnetic field and when magnetic field is absent. The law of momentum conservation does not change the density of probability distribution in both cases, just as it is assumed in the conventional theory. It is shown that in systems where the kinetic energy depends only on particle momenta canonically conjugated with Cartesian coordinates being their diagonal quadric form,the angular momentum conservation law changes the density of distribution of the system only in case the full angular momentum of a system is not equal to zero. In the gas of charged particles in a uniform magnetic field the density of distribution also varies if the angular momentum is zero [see Dubrovskii I.M., Condensed Matter Physics, 2206, 9, 23]. Twodimensional gas of charged particles located within a section of an endless strip filled with gas in magnetic field is considered. Under such conditions the angular momentum is not conserved. Directional particle ows take place close to the strip boundaries, and, as a consequence, the phase trajectory of the considered set of particles does not remain within the limited volume of the phase space. In order to apply a statistical thermodynamics method, it was suggested to consider near-boundary trajectories relative to a reference system that moves uniformly. It was shown that if the diameter of an orbit having average thermal energy is much smaller than a strip width, the corrections to thermodynamic functions are small depending on magnetic field. Only the average velocity of near-boundary particles that form near-boundary electric currents creating the paramagnetic moment turn out to be essential. У рамках iдей Хiнчина [А.Я. Хинчин, Математические принципы статистической механики. ГИТТЛ, Москва-Ленинград, 1943] розглянуто закони збереження iмпульсу i кутового моменту у випадках присутностi або вiдсутностi магнiтного поля. Закон збереження iмпульсу не змiнює розподiлу густини ймовiрностi, як i передбачалося у загальноприйнятiй теорiї. Показано, що у системах, кiнетична енергiя яких залежить тiльки вiд iмпульсiв частинок, канонiчно спряжених декартовим координатам, i є дiагональною квадратичною формою, закон збереження кутового моменту змiнює розподiл густини ймовiрностi тiльки, якщо повний кутовий момент системи не дорiвнює нулю. Для газу заряджених частинок у магнiтному полi розподiл густини ймовiрностi змiнюється i у випадку нульового повного кутового моменту [Dubrovskii I.M., Condensed Matter Physics, 2206, 9, 23]. Розглянуто двовимiрний газ заряджених частинок, що знаходиться на вiдрiзку необмеженої смуги, у магнiтному полi. У цих умовах кутовий момент не зберiгається. Поблизу границь смуги iснують спрямованi потоки частинок, тому фазова траєкторiя газу, що розглядається, не залишається у обмеженiй областi фазового простору. Щоб застосувати до цього випадку метод статистичної механiки, запропоновано розглядати траєкторiї поблизу границь у системi вiдлiку, що рiвномiрно рухається. При цьому виявляється, що поправки до термодинамiчних функцiй, що залежать вiд магнiтного поля малi, якщо дiаметр орбiти з середньою термiчною енергiєю значно менший, нiж ширина смуги. Суттєва тiльки середня швидкiсть частинок, що вiдбиваються вiд границь. Цi частинки утворюють поблизу границь електричний струм, що породжує магнiтний момент.
issn 1607-324X
url https://nasplib.isofts.kiev.ua/handle/123456789/119572
citation_txt The role of angular momentum conservation law in statistical mechanics / I.M. Dubrovskii // Condensed Matter Physics. — 2008. — Т. 11, № 4(56). — С. 585-596. — Бібліогр.: 11 назв. — англ.
work_keys_str_mv AT dubrovskiiim theroleofangularmomentumconservationlawinstatisticalmechanics
AT dubrovskiiim rolʹzakonuzberežennâkutovogomomentuustatističniimehanici
AT dubrovskiiim roleofangularmomentumconservationlawinstatisticalmechanics
first_indexed 2025-12-07T13:29:34Z
last_indexed 2025-12-07T13:29:34Z
_version_ 1850856360467496960