Simulating an electrochemical interface using charge dynamics
We present a simple classical method for treating charge mobility in metals adjacent to liquid solutions. The method, known as electrode charge dynamics, effectively bridges the computational gap between ab initio calculations on small metal clusters and large-scale simulations of metal surfaces...
Gespeichert in:
| Datum: | 2005 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут фізики конденсованих систем НАН України
2005
|
| Schriftenreihe: | Condensed Matter Physics |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/119605 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Simulating an electrochemical interface using charge dynamics / C.G. Guymon, R.L. Rowley, J.N. Harb, D.R. Wheeler // Condensed Matter Physics. — 2005. — Т. 8, № 2(42). — С. 335–356. — Бібліогр.: 29 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | We present a simple classical method for treating charge mobility in metals
adjacent to liquid solutions. The method, known as electrode charge
dynamics, effectively bridges the computational gap between ab initio calculations
on small metal clusters and large-scale simulations of metal surfaces
with arbitrary geometry. We have obtained model parameters for a
copper (111) metal surface using high-level quantum-mechanical calculations
on a 10-atom copper cluster. We validated the model against the
classical image-charge result and ab initio results on an 18-atom copper
cluster. The model is used in molecular dynamics simulations to predict
the structure of the fluid interface for neat water and for aqueous NaCl solution.
We find that water is organized into a two-dimensional ice-like layer
on the surface and that both Na⁺ and Cl⁻ are strongly bound to the copper.
When charging the metal electrode, most of the electrolyte response
occurs in the diffuse part of the double layer |
|---|