Topological solitons of the Lawrence–Doniach model as equilibrium Josephson vortices in layered superconductors

We present a complete, exact solution of the problem of the magnetic properties of layered superconductors with an infinite number of superconducting layers in parallel fields H 0. Based on a new exact variational method, we determine the type of all stationary points of both the Gibbs and Helm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2004
1. Verfasser: Kuplevakhsky, S.V.
Format: Artikel
Sprache:English
Veröffentlicht: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2004
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/119840
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Topological solitons of the Lawrence–Doniach model as equilibrium Josephson vortices in layered superconductors / S.V. Kuplevakhsky // Физика низких температур. — 2004. — Т. 30, № 7-8. — С. 856-873. — Бібліогр.: 32 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-119840
record_format dspace
spelling Kuplevakhsky, S.V.
2017-06-10T06:56:47Z
2017-06-10T06:56:47Z
2004
Topological solitons of the Lawrence–Doniach model as equilibrium Josephson vortices in layered superconductors / S.V. Kuplevakhsky // Физика низких температур. — 2004. — Т. 30, № 7-8. — С. 856-873. — Бібліогр.: 32 назв. — англ.
0132-6414
PACS: 74.50.+r, 74.80.Dm, 05.45.Yv
https://nasplib.isofts.kiev.ua/handle/123456789/119840
We present a complete, exact solution of the problem of the magnetic properties of layered superconductors with an infinite number of superconducting layers in parallel fields H 0. Based on a new exact variational method, we determine the type of all stationary points of both the Gibbs and Helmholtz free-energy functionals. For the Gibbs free-energy functional, they are either points of strict, strong minima or saddle points. All stationary points of the Helmholtz free-energy functional are those of strict, strong minima. The only minimizes of both the functionals are the Meissner (0-soliton) solution and soliton solutions. The latter represent equilibrium Josephson vortices. In contrast, non-soliton configurations (interpreted in some previous publications as «isolated fluxons» and «fluxon lattices») are shown to be saddle points of the Gibbs free-energy functional: They violate the conservation law for the flux and the stationarity condition for the Helmholtz free-energy functional. For stable solutions, we give a topological classification and establish a one-to-one correspondence with Abrikosov vortices in type-II superconductors. In the limit of weak interlayer coupling, exact, closed-form expressions for all stable solutions are derived: They are nothing but the «vacuum state» and topological solitons of the coupled static sine-Gordon equations for the phase differences. The stable solutions cover the whole field range 0 < H < ∞ and their stability regions overlap. Soliton solutions exist for arbitrary small transverse dimensions of the system, provided the field H to be sufficiently high. Aside from their importance for weak superconductivity, the new soliton solutions can find applications in different fields of nonlinear physics and applied mathematics.
en
Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
Физика низких температур
Сверхпроводимость и мезоскопические структуры
Topological solitons of the Lawrence–Doniach model as equilibrium Josephson vortices in layered superconductors
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Topological solitons of the Lawrence–Doniach model as equilibrium Josephson vortices in layered superconductors
spellingShingle Topological solitons of the Lawrence–Doniach model as equilibrium Josephson vortices in layered superconductors
Kuplevakhsky, S.V.
Сверхпроводимость и мезоскопические структуры
title_short Topological solitons of the Lawrence–Doniach model as equilibrium Josephson vortices in layered superconductors
title_full Topological solitons of the Lawrence–Doniach model as equilibrium Josephson vortices in layered superconductors
title_fullStr Topological solitons of the Lawrence–Doniach model as equilibrium Josephson vortices in layered superconductors
title_full_unstemmed Topological solitons of the Lawrence–Doniach model as equilibrium Josephson vortices in layered superconductors
title_sort topological solitons of the lawrence–doniach model as equilibrium josephson vortices in layered superconductors
author Kuplevakhsky, S.V.
author_facet Kuplevakhsky, S.V.
topic Сверхпроводимость и мезоскопические структуры
topic_facet Сверхпроводимость и мезоскопические структуры
publishDate 2004
language English
publisher Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України
format Article
description We present a complete, exact solution of the problem of the magnetic properties of layered superconductors with an infinite number of superconducting layers in parallel fields H 0. Based on a new exact variational method, we determine the type of all stationary points of both the Gibbs and Helmholtz free-energy functionals. For the Gibbs free-energy functional, they are either points of strict, strong minima or saddle points. All stationary points of the Helmholtz free-energy functional are those of strict, strong minima. The only minimizes of both the functionals are the Meissner (0-soliton) solution and soliton solutions. The latter represent equilibrium Josephson vortices. In contrast, non-soliton configurations (interpreted in some previous publications as «isolated fluxons» and «fluxon lattices») are shown to be saddle points of the Gibbs free-energy functional: They violate the conservation law for the flux and the stationarity condition for the Helmholtz free-energy functional. For stable solutions, we give a topological classification and establish a one-to-one correspondence with Abrikosov vortices in type-II superconductors. In the limit of weak interlayer coupling, exact, closed-form expressions for all stable solutions are derived: They are nothing but the «vacuum state» and topological solitons of the coupled static sine-Gordon equations for the phase differences. The stable solutions cover the whole field range 0 < H < ∞ and their stability regions overlap. Soliton solutions exist for arbitrary small transverse dimensions of the system, provided the field H to be sufficiently high. Aside from their importance for weak superconductivity, the new soliton solutions can find applications in different fields of nonlinear physics and applied mathematics.
issn 0132-6414
url https://nasplib.isofts.kiev.ua/handle/123456789/119840
citation_txt Topological solitons of the Lawrence–Doniach model as equilibrium Josephson vortices in layered superconductors / S.V. Kuplevakhsky // Физика низких температур. — 2004. — Т. 30, № 7-8. — С. 856-873. — Бібліогр.: 32 назв. — англ.
work_keys_str_mv AT kuplevakhskysv topologicalsolitonsofthelawrencedoniachmodelasequilibriumjosephsonvorticesinlayeredsuperconductors
first_indexed 2025-11-30T12:47:52Z
last_indexed 2025-11-30T12:47:52Z
_version_ 1850857663359877120