Diffusion in two-component quasiparticle systems of liquid and solid mixtures of helium isotopes
An exact expression for the diffusion time which depends on the interaction rates for particles of not only different, but also of the same species, has been derived from the system of kinetic equations. The result is valid for particles with arbitrary statistics and energy-momentum relations. The...
Saved in:
| Date: | 1999 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Article |
| Language: | English |
| Published: |
Інститут фізики конденсованих систем НАН України
1999
|
| Series: | Condensed Matter Physics |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/119920 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Diffusion in two-component quasiparticle systems of liquid and solid mixtures of helium isotopes / I.N. Adamenko, K.E. Nemchenko, A.V. Zhukov, T.F. George, L.N. Pandey, Chung-In Um // Condensed Matter Physics. — 1999. — Т. 2, № 1(17). — С. 63-74. — Бібліогр.: 23 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-119920 |
|---|---|
| record_format |
dspace |
| spelling |
nasplib_isofts_kiev_ua-123456789-1199202025-02-23T18:53:42Z Diffusion in two-component quasiparticle systems of liquid and solid mixtures of helium isotopes Дифузія у двокомпонентних системах квазічастинок рідких та твердих сумішей ізотопів гелію Adamenko, I.N. Nemchenko, K.E. Zhukov, A.V. George, T.F. Pandey, L.N. Um, Chung-In An exact expression for the diffusion time which depends on the interaction rates for particles of not only different, but also of the same species, has been derived from the system of kinetic equations. The result is valid for particles with arbitrary statistics and energy-momentum relations. The derived general relations are valid for investigating diffusion in liquid and solid ³He-⁴He mixtures. The contribution of interaction between quasiparticles of the same type to the diffusion coefficient and effective thermal conductivity of superfluid solutions is analyzed. The calculated values are compared with experimental data. The calculated diffusion coefficient of ³He-⁴He solid solutions differs from the previous theoretical results. A comparison of the obtained diffusion coefficient with experimental data makes it possible to determine the numerical value of the energy band width for impurity quasiparticles. Виходячи з системи кiнетичних рiвнянь для компонент сумiшi отримано точний вираз для дифузiйного часу, що залежить вiд взаємодiї частинок не тiльки рiзних, а й одного типу. Отриманий результ справедливий для частинок з довiльною дисперсiєю і статистикою. Одержаний точний вираз використовується для дослiдження дифузiї у рiдких та твердих квантових розчинах ³He-⁴He. Проаналiзовано внесок взаємодiї мiж квазiчастинками однакових типiв у коефiцiєнт дифузiї та теплопровiдностi надплинних розчинiв. Обчисленi результати порiвнюються з iснуючими експериментальними даними. Отриманий коефiцiєнт дифузiї для твердих квантових розчинiв ³He-⁴He iстотно вiдрiзняється від попереднiх результатiв теорiї. Порiвняння цього результату з експериментальними даними дозволило дiстати числове значення для енергетичної зони квазiчастинок домiшки. 1999 Article Diffusion in two-component quasiparticle systems of liquid and solid mixtures of helium isotopes / I.N. Adamenko, K.E. Nemchenko, A.V. Zhukov, T.F. George, L.N. Pandey, Chung-In Um // Condensed Matter Physics. — 1999. — Т. 2, № 1(17). — С. 63-74. — Бібліогр.: 23 назв. — англ. 1607-324X DOI:10.5488/CMP.2.1.63 PACS: 51.20.+d, 67.80.Mg https://nasplib.isofts.kiev.ua/handle/123456789/119920 en Condensed Matter Physics application/pdf Інститут фізики конденсованих систем НАН України |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| language |
English |
| description |
An exact expression for the diffusion time which depends on the interaction rates for particles of not only different, but also of the same species,
has been derived from the system of kinetic equations. The result is valid
for particles with arbitrary statistics and energy-momentum relations. The
derived general relations are valid for investigating diffusion in liquid and
solid ³He-⁴He mixtures. The contribution of interaction between quasiparticles of the same type to the diffusion coefficient and effective thermal
conductivity of superfluid solutions is analyzed. The calculated values are
compared with experimental data. The calculated diffusion coefficient of
³He-⁴He solid solutions differs from the previous theoretical results. A comparison of the obtained diffusion coefficient with experimental data makes
it possible to determine the numerical value of the energy band width for
impurity quasiparticles. |
| format |
Article |
| author |
Adamenko, I.N. Nemchenko, K.E. Zhukov, A.V. George, T.F. Pandey, L.N. Um, Chung-In |
| spellingShingle |
Adamenko, I.N. Nemchenko, K.E. Zhukov, A.V. George, T.F. Pandey, L.N. Um, Chung-In Diffusion in two-component quasiparticle systems of liquid and solid mixtures of helium isotopes Condensed Matter Physics |
| author_facet |
Adamenko, I.N. Nemchenko, K.E. Zhukov, A.V. George, T.F. Pandey, L.N. Um, Chung-In |
| author_sort |
Adamenko, I.N. |
| title |
Diffusion in two-component quasiparticle systems of liquid and solid mixtures of helium isotopes |
| title_short |
Diffusion in two-component quasiparticle systems of liquid and solid mixtures of helium isotopes |
| title_full |
Diffusion in two-component quasiparticle systems of liquid and solid mixtures of helium isotopes |
| title_fullStr |
Diffusion in two-component quasiparticle systems of liquid and solid mixtures of helium isotopes |
| title_full_unstemmed |
Diffusion in two-component quasiparticle systems of liquid and solid mixtures of helium isotopes |
| title_sort |
diffusion in two-component quasiparticle systems of liquid and solid mixtures of helium isotopes |
| publisher |
Інститут фізики конденсованих систем НАН України |
| publishDate |
1999 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/119920 |
| citation_txt |
Diffusion in two-component quasiparticle systems of liquid and solid mixtures of helium isotopes / I.N. Adamenko, K.E. Nemchenko, A.V. Zhukov, T.F. George, L.N. Pandey, Chung-In Um // Condensed Matter Physics. — 1999. — Т. 2, № 1(17). — С. 63-74. — Бібліогр.: 23 назв. — англ. |
| series |
Condensed Matter Physics |
| work_keys_str_mv |
AT adamenkoin diffusionintwocomponentquasiparticlesystemsofliquidandsolidmixturesofheliumisotopes AT nemchenkoke diffusionintwocomponentquasiparticlesystemsofliquidandsolidmixturesofheliumisotopes AT zhukovav diffusionintwocomponentquasiparticlesystemsofliquidandsolidmixturesofheliumisotopes AT georgetf diffusionintwocomponentquasiparticlesystemsofliquidandsolidmixturesofheliumisotopes AT pandeyln diffusionintwocomponentquasiparticlesystemsofliquidandsolidmixturesofheliumisotopes AT umchungin diffusionintwocomponentquasiparticlesystemsofliquidandsolidmixturesofheliumisotopes AT adamenkoin difuzíâudvokomponentnihsistemahkvazíčastinokrídkihtatverdihsumíšejízotopívgelíû AT nemchenkoke difuzíâudvokomponentnihsistemahkvazíčastinokrídkihtatverdihsumíšejízotopívgelíû AT zhukovav difuzíâudvokomponentnihsistemahkvazíčastinokrídkihtatverdihsumíšejízotopívgelíû AT georgetf difuzíâudvokomponentnihsistemahkvazíčastinokrídkihtatverdihsumíšejízotopívgelíû AT pandeyln difuzíâudvokomponentnihsistemahkvazíčastinokrídkihtatverdihsumíšejízotopívgelíû AT umchungin difuzíâudvokomponentnihsistemahkvazíčastinokrídkihtatverdihsumíšejízotopívgelíû |
| first_indexed |
2025-11-24T12:23:57Z |
| last_indexed |
2025-11-24T12:23:57Z |
| _version_ |
1849674471523221504 |
| fulltext |
Condensed Matter Physics, 1999, Vol. 2, No. 1(17), p. 63–74
Diffusion in two-component
quasiparticle systems of liquid and
solid mixtures of helium isotopes
I.N.Adamenko 1 , K.E.Nemchenko 1 , A.V.Zhukov 1 ,
Thomas F. George 2 , Lakshmi N. Pandey 3 , Chung-In Um 4
1 Department of Physics and Technology, Kharkiv State University,
4 Svobody Sq., Kharkiv, 310077, Ukraine
2 Office of Chancellor, Departments of Chemistry, Physics and Astronomy,
University of Wisconsin-Stevens Point, Wisconsin 54481-3897, U.S.A.
3 Departments of Chemistry and Physics, Washington State University,
Pullman, Washington 99164-4630, U.S.A.
4 Department of Physics, College of Science, Korea University,
Seoul 136-701, Korea
Received December 5, 1997
An exact expression for the diffusion time which depends on the interac-
tion rates for particles of not only different, but also of the same species,
has been derived from the system of kinetic equations. The result is valid
for particles with arbitrary statistics and energy-momentum relations. The
derived general relations are valid for investigating diffusion in liquid and
solid 3He-4He mixtures. The contribution of interaction between quasipar-
ticles of the same type to the diffusion coefficient and effective thermal
conductivity of superfluid solutions is analyzed. The calculated values are
compared with experimental data. The calculated diffusion coefficient of
3He-4He solid solutions differs from the previous theoretical results. A com-
parison of the obtained diffusion coefficient with experimental data makes
it possible to determine the numerical value of the energy band width for
impurity quasiparticles.
Key words: diffusion, thermal conductivity, helium, quantum liquid,
quantum solid, superfluids, 3He-4He mixtures, phonons, rotons,
impuritons.
PACS: 51.20.+d, 67.80.Mg
1. Introduction
Investigation of diffusion processes in condensed media, in which a quasiparticle
description is valid, is one of the most important problems of modern classical
c© I.N.Adamenko, K.E.Nemchenko, A.V.Zhukov, T.F.George, L.N.Pandey, Chung-In Um 63
I.N.Adamenko et al.
and quantum kinetics. The present paper deals with the diffusion of impurity
excitations in weakly-concentrated solutions of 3He in superfluid and solid 4He.
The general result obtained for a two-component gaseous system with arbitrary
statistics and the dispersion law makes it possible to describe the quasiparticle
systems in some limiting cases of interest.
For every classical and quantum two-component gaseous system known to us,
the diffusion coefficients can be written in the form
D = u2DτD, (1)
where uD is a typical velocity, whose analytical expression is determined by the
dispersion law and statistics of the particles, and τD is a typical diffusion time.
The solution of a set of two linearized kinetic equations for a mixture of α-type
and β-type gases with any dispersion law and chemical potential takes the form
(see [1])
τD = −〈ϕD | (Ŝ + Î)−1 | ϕD〉, (2)
where Ŝ and Î are the matrices in the 2D space of component momenta. The
matrix
Ŝ =
(
Jαα 0
0 Jββ
)
(3)
includes the operators of collisions between particles of the same type, and the
matrix
Î =
(
Jαβ Jαβ
Jβα Jβα
)
(4)
consists of the operators of collisions between particles of different types. The col-
lision operators Jkl(k, l = α, β) are linearized integrals of the collision of k−type
particles with l−type particles and in a usual way can be expressed by the tran-
sition probability density function.
2. Diffusion time
The time τD can be expressed as a scalar product determined in the following
way:
〈ψ | χ〉 =
∑
k=α,β
1〈ψk | χk〉1 = −
∑
k=α,β
∫
ψ∗
kχkf
′
0kdΓk. (5)
Here and below, the subscript 1 on a bra- or a ket-vector denotes a 1D vector,
and f ′
0k is a derivative of the local equilibrium distribution function with respect
to energy. The vector |ϕD〉 that determines τD is normalized with respect to the
scalar product (5) as
| ϕD〉 = (ρραρβ)
−
1
2
∣
∣
∣
∣
ρβpαz
−ραpβz
〉
, (6)
64
Diffusion in 3He-4He mixtures
where pkz is the z-th component of the momentum (k = α, β), and
ρk = 1〈pkz|pkz〉1 (7)
is the normal density of the k-th component, and ρ = ρα + ρβ is the total density
of the mixture.
To obtain an exact expression for the matrix elements (2), one should introduce
a complete set of orthonormal two-component vectors |ϕn〉 (n = 1, 2, ..). The first
vector of this set corresponds to the total momentum of the two-component system
of quasiparticles,
| ϕ1〉 = ρ−1
∣
∣
∣
∣
pαz
pβz
〉
, (8)
and the second one should be taken as
| ϕ2〉 =| ϕD〉. (9)
The remaining vectors can be constructed by using the standard procedure (see,
e.g., [2]) and the definition of the scalar product (5). By constructing a complete
set of vectors in this way, the expression for τD
τD = −
{
[Ŝ + Î]
−1
}
22
(10)
can be rewritten as
τD = −
{
I22 −
∞
∑
n,n′=3
I2n[(Ĩ + S̃)
−1
]nn′In′2
}−1
. (11)
Here the square matrices Ĩ and S̃ include the matrix elements
(Ĩ)nn′ = Inn′, (S̃)nn′ = Snn′, (12)
where
Inn′ = 〈ϕn|Î|ϕ
′
n〉, Snn′ = 〈ϕn|Ŝ|ϕ
′
n〉. (13)
The matrices Ĩ and S̃ are infinite and nondiagonal. Therefore, the exact solution
(11) does not allow us to obtain an explicit analytical expression for τD. However,
the solution (11) makes it possible to consider various limiting cases, to find min-
imal and maximal values of τD, to obtain correct interpolation formulae and to
carry out computer calculations for various physical systems.
So, in the case of fast equilibrium established between particles of the same
type, i.e. when the inequality
Snn′≫Inn′ (14)
is valid, one can obtain from equation (11)
τD = τDmin = −
1
I22
= (τ
(0)
αβ
−1
+ τ
(0)
βα
−1
)
−1
, (15)
65
I.N.Adamenko et al.
where
τ
(0)
kl
−1
= −〈Jkl〉k; k, l = α, β; k 6=l. (16)
Here and below, the normalized average of the arbitrary operator L̂ with respect
to the quasiparticle momentum is denoted as
〈L̂〉k = ρ−1
k 1〈pkz|L̂|pkz〉1. (17)
According to the momentum conservation law and definition (16),
τ
(0)
αβ
−1
=
ρβ
ρα
τ
(0)
βα
−1
. (18)
Using the fact that the operators Ĩ and S̃ are Hermitian and defined as negative,
it can be shown that
τD>τDmin . (19)
In the opposite limiting case of the slow establishing of equilibrium between iden-
tical particles (Sββ′ ≪ Iββ′), τD reaches its maximum value
τDmax = 〈ϕ2|Î
−1|ϕ2〉. (20)
When the density of the α−component is relatively low (ρα ≪ ρβ) and the
relaxation time in the α−component is great (Jαα→0), from (11) we obtain
τD = τ
(∞)
αβ , (21)
where
τ
(∞)
αβ = −〈J−1
αβ 〉α. (22)
It should be noted that (16) is the average of the rate, but (22) is the average of
the time, and one can prove that for arbitrary momentum dependence of Jαβ, the
time (22) is greater than the time defined by (16).
For a definite physical system, the rate τ
(0)
αβ
−1
can be easily calculated, but to
calculate τ
(∞)
αβ
−1
(22) one must find the inverse operator to the integral operator
Jαβ, which can be done only by using some approximations. The exact expression
(11) and the limiting formulae (15), (20) and (22) make it possible to propose the
correct relaxation-time approximation for a two-component system:
Ŝ =
−t−1
αα + t−1
αα|pαz〉1
τ
(0)
αα
ρα 1〈pαz|t
−1
αα 0
0 −t−1
ββ + t−1
ββ |pβz〉1
τ
(0)
ββ
ρβ
1〈pβz|t
−1
ββ
,
Î =
−t−1
αβ t−1
αβ |pαz〉1ρ
−1
α τ
(0)
αβ 1〈pβz|t
−1
βα
t−1
βα|pβz〉1ρ
−1
β τ
(0)
βα 1〈pαz|t
−1
αβ −t−1
βα
. (23)
66
Diffusion in 3He-4He mixtures
This approximation satisfies the conservation of the z-th component of the total
momentum of the system:
Î |ϕ1〉 = 0 . (24)
Here
t−1
kl (pk) =
νkl(pk)
〈νkl(pk)〉k
τ
(0)
kl
−1
(k 6=l), (25)
and νkl is a transport scattering rate that is determined in a usual way from
collision integrals.
The model (23) can be used for the calculation of τD to give
τD = τDmin +
ρβ
ρ
(ταβ − τ
(0)
αβ ) +
ρα
ρ
(τβα − τ
(0)
βα ), (26)
where
τkl = 〈Rk〉+ 〈Rkt
−1
kk 〉
2
k〈Rkt
−1
kk t
−1
kl 〉
−1
k , (27)
Rk = (t−1
kk + t−1
kl )
−1
. (28)
The time τkl in (26) depends on the relaxation rates t−1
kk of the k-particles. Note,
the expression (26) obtained in the limiting cases gives not only the formulae (16),
(20) and (22) of this paper, but also the results of other theoretical investigations
[3] and, in particular, the well-known Callaway formula [4].
3. Thermal conductivity of quasiparticle systems of dilute so-
lutions of 3 He in superfluid 4 He
Because of the nature of thermal excitations, diffusion in such mixtures defines
thermal conductivity of the matter that includes these thermal excitations [5].
Consider a superfluid mixture of helium isotopes. The kinetic properties of the
mixtures are determined by a set of quasiparticles: phonons and rotons (thermal
excitations of He II) and impuritons (3He quasiparticles). It is useful to separate
three temperature regions which differ one from another by the types of physical
processes which govern the thermal conductivity of the mixture.
At low temperatures (T < 0.6 K), when the roton contribution can be ne-
glected, the thermal conductivity of the mixtures is determined by diffusion in the
phonon-impuriton system:
κeff = Diph
(
Sph
ρph + ρi
ρph
)2 1
n3
+ κ3 . (29)
Here
Diph =
4
9
1〈εi|1〉
2
1
1〈1|1〉1
ρph
ρph + ρi
1
ρi
τ
(iph)
D (30)
is a coefficient of diffusion of impuritons in a phonon gas, Sph is the entropy of
the phonon gas, n3 is the number density of impuritons, κ3 is a partial coefficient
of thermal conductivity, and εi = p2i /2mi is the kinetic energy of impuritons. The
67
I.N.Adamenko et al.
time τ
(iph)
D is defined by (26) where the subscripts α, β refer to ph, i, respectively.
For nondegenerate mixtures one has
2
3
1〈εi|1〉1
1〈1|1〉1
= T. (31)
Figure 1 shows the calculated (from equation (29)) and measured in ([6]) values
of the effective coefficient of thermal conductivity for a mixture with the concen-
tration x = 1.39 · 10−4. The contribution of κ3 is negligible. At this concentration
τ
(iph)
D turns out to be equal to τ
(iph)
Dmin, which corresponds to fast relaxation in the
phonon system of this mixture.
0.5 1.0 1.5 2.0
10
4
10
5
10
6
κ
,
er
g/
(c
m
s
K
)
T , K
Figure 1. Temperature dependence of the effective thermal conductivity of a
mixture with the concentration x = 1.39 · 10−4, showing the contributions to
the effective thermal conductivity from the diffusion in the impuriton-phonon
(curve 1), roton-phonon (curve 2) and impuriton-roton (curve 3) systems. Curve
4 corresponds to the effective thermal conductivity calculated by taking into
account contributions from all the quasiparticles. The experimental data obtained
in [6] are represented by �.
Figure 2 gives the observed ([6] and [7]) and calculated values of the effective
coefficient of the thermal conductivity of a mixture with different concentrations.
The figure shows that in the temperature region considered, with the increase in
concentration the coefficient κeff with τ
(iph)
D = τ
(iph)
Dmin (dashed lines) differs from
the values obtained from formula (26), which takes into account the finite values
of the phonon-phonon relaxation times. The values calculated by formula (26)
68
Diffusion in 3He-4He mixtures
are presented by solid curves and are in better agreement with the experimental
data. The results for the considered temperature region correspond to the calcu-
lations of [3, 8, 9]. In the region of intermediate temperature (0.7 K < T < 1 K),
when the concentration of impuritons is small, the effective thermal conductivity
is determined mainly by diffusion in the gas of thermal excitations.
0.5 1.0 1.5 2.0
10
3
10
4
10
5
10
6
κ
,
er
g/
(c
m
s
K
)
T , K
Figure 2. Temperature dependence of the effective thermal conductivity of the
mixtures with different concentrations: x = 1.39 · 10−4 (curve 1), x = 1.32 · 10−3
(curve 2) and x = 1.36 ·10−2 (curve 3). The results of the calculations taking into
account the contributions from all the types of quasiparticles are depicted by solid
and dashed curves. The latter correspond to calculations with the assumption of
instantaneous relaxation in the mixture components. The experimental results
obtained in [6] and [7] are represented by � and ♦.
Diffusion processes in a phonon-roton gas were first considered in [10]. Later,
in [1], these processes were shown to be the reason for a thermal transfer caused
by a difference of dispersion laws of phonons and rotons. The calculation from
relation (26) is analogous to that made in [1] and gives
κeff≈κ
(rph)
D = T−1 ρphρr
ρph + ρr
{SphT
ρph
−
SrT
ρr
}2
τ
(rph)
D . (32)
Here Sr and ρr are the entropy and normal density of rotons, and τ
(rph)
D is given
by equation (26) in which the subscripts α, β should be substituted with r, ph,
respectively. Expression (32) gives the result of [1] when the times tphph and trr are
equal to zero. Curve 3 in figure 1 presents the calculations from equation (32) and
69
I.N.Adamenko et al.
shows the existence of a wide enough temperature range, such that κD should be
taken into account.
At high enough temperatures (T > 1 K) the kinetic properties of superfluid
mixtures are governed by rotons and impuritons. According to [11], in this tem-
perature region, the coefficient of effective thermal conductivity can be written
as
κeff = Dir
(
Sr
ρr + ρi
ρr
)2
n−1
3 + κ3 + κr , (33)
where κr is thermal conductivity of rotons.
Using the relations (1) and (26), the diffusion coefficient of impuritons in a
roton gas is given as
Dir =
ρr
ρr + ρi
T
mi
τ
(ir)
D . (34)
Here τ
(ir)
D is given by relation (26), where the subscripts α, β should be substituted
by r, i, respectively. The relation (34) gives the result of [1] if the times tii and trr
are equal to zero. The rate of the roton-impuriton interaction can be written in
the form [12]
t−1
ir (pi) = A2nr
(
∫
∞
0
exp
{
−
µv2r
2T
}
dvr
)
−1
×
∫
∞
0
exp
{
−
µv2r
2T
}
dvr
1
2
∫ 1
−1
sin2θ
(µ
2
(vr − vi)
2 +
p2i
2mi
sin2θ
)
1
2
d(cos θ) (35)
where A is a scattering amplitude.
The limiting relations for the relaxation rates refer to the absence of equilibrium
in the impuritons (tii≫tir) and fast relaxation in the roton gas (trr≪tri). Under
these conditions the general expression (26) gives
τ
(ir)
D = τDmax
(ir) = 〈tir〉i . (36)
The results calculated from equation (34) for the effective thermal conductivity
for a mixture with x = 1 · 10−4 are presented in figure 1 (curve 1). Here the
contributions of the third and fourth terms in the right-hand side of equation (33)
can be neglected. The account of the finite values of tii and trr makes the calculated
values greater to the order of 10%, improving the agreement between theory and
experiment. In figure 2, the dashed curves present calculations with τD = τDmin,
and the solid curves correspond to τD calculated from equation (26).
4. Diffusion in solid 3 He- 4 He mixtures
The methods used in the previous section allow us to calculate the contribution
of the phonon-impuriton interaction to spin diffusion of impurities in solid 3He-4He
mixtures as
D
(s)
iph =
2
3
1〈εi|1〉1
1〈1|1〉1
1
mi
τ
(0)
phi . (37)
70
Diffusion in 3He-4He mixtures
0.5 1.0 1.5 2.0
10
-7
10
-6
D
s
, c
m
/s
1/T , 1/K
Figure 3. Dependence of the spin diffusion coefficient of solid 3He-4He mixtures
on the reciprocal temperature for the concentration x = 6 · 10−5. � stands for
the experimental data of [20–22], and the curve corresponds to the calculations
by equations (39–42).
Calculating the scalar products in (37), one should take integrals in the limit of
the impurity energy band ∆ ≪ T , thus giving
D
(s)
iph =
2∆
5mi
τ
(0)
iph . (38)
This result differs from the diffusion coefficient in the phonon-impuriton system
of a liquid 3He-4He mixture, especially by its temperature dependence. To examine
this, we rewrite equation (38) by using the definition (18):
D
(s)
iph =
4
25
∆2
T
ni
ρph
τ
(0)
phi . (39)
The time τ
(0)
phi has a typical Rayleigh scattering temperature dependence T−4, and
ρph is proportional to T
4, so that Ds
iph ∼ T−9. Such a dependence was first obtained
in [13] from phenomenological arguments. According to equation (38), this depen-
dence is completely determined by τ
(0)
iph, and from equation (39) it follows that
eight powers of temperature deal with phonons (normal density and scattering
rate), and one power deals with the normal density of impuritons. The expressions
(38) and (39) differ from the results of [13, 14-18]. Relation (39) includes param-
eters which can be directly determined from independent experiments on thermal
71
I.N.Adamenko et al.
conductivity in solid 3He-4He mixtures [19]. The numerical values of ∆ can be
obtained from the experimental data [20–22] for a mixture with x = 6×10−5. The
expression for spin diffusion can be written in the form
Ds = (D
(s)
iph
−1
+D−1
ii )
−1
, (40)
where Dii is independent of the temperature contribution of the impuriton- impu-
riton interaction to spin diffusion, which according to [23] is
Dii = 2.67 · 10−7 cm2/s. (41)
Figure 3 presents the experimental [18] and calculated (by formula (41)) values of
the diffusion coefficients. An agreement between the calculated and observed data
is achieved with
∆ = 3.5 · 10−4 K (42)
The obtained value (42) refines the results of [17, 18] which give the order of
magnitude only.
References
1. Adamenko I.N., Nemchenko K.E. Diffusion of quasiparticles of 3He-4He mixtures and
classical particles. // Fiz. Nizk. Temp., 1995, vol. 21, p. 498–508 (in Russian).
2. Fertziger J.H., Kaper H.G. Mathematical Theory of Transport Processes in Gases.
Amsterdam, North-Holland, 1972.
3. Adamenko I.N., Rudavskii E.Ya., Tsyganok V.I., Chagovets V.K. New relaxation pro-
cess in the phonon-impuriton system. // Pis’ma Zh. Eksp. Teor. Fiz., 1984, vol. 33,
p. 404–407 (in Russian).
4. Callaway J. Model for lattice thermal conductivity at low temperatures. // Phys.
Rev., 1959, vol. 113, p. 1046–1051.
5. Landau L.D., Pomeranchuk I.Ya. About the motion of outside particles in helium II.
// Dokl. Ak. Nauk SSSR, 1948, vol. 59, p. 669–671 (in Russian).
6. Ptukha T.P. Thermal conductivity and diffusion of dilute 3He-4He solutions in the
temperature range of from λ-point to 0.6 K. // Zh. Eksp. Teor. Fiz., 1961, vol. 40,
p. 1583–1593 (in Russian).
7. Abel W.B., Wheatley J.C. Experimental thermal conductivity of two dilute solutions
of 3He in superfluid 4He. // Phys. Rev. Lett., 1968, vol. 21, p. 1231–1234.
8. Adamenko I.N., Tsyganok V.I. Change of phonon kinetics due to dispersion law and
impurities. // Zh. Eksp. Teor. Phys., 1984, vol. 87, p. 865–877 (in Russian).
9. Adamenko I.N., Tsyganok V.I. Collective modes and dissipative coefficients in solu-
tions of 3He-4He quantum liquids. // Zh. Eksp. Teor. Phys., 1985, vol. 88, p. 1641–1655
(in Russian).
10. Um C.I., Jun C., Shin H., George T.F. Quasi-diffusion between phonon and roton gases
in two- and three-dimentional liquid helium. // J. Low Temp. Phys., 1990, vol. 78,
p. 51–61.
11. Khalatnikov I.M. The Theory of Superfluidity. Nauka, Moskow, 1971 (in Russian).
72
Diffusion in 3He-4He mixtures
12. Adamenko I.N., Zhukov A.V., Nemchenko K.E. Contribution of the interaction of
identical particles to the diffusion of classical and quantum mixtures. // Fiz. Nizk.
Temp., 1996, vol. 22, p. 1470–1473 (in Russian).
13. Andreev A.F., Lifshitz I.M. Quantum theory of defects in crystals. // Zh. Eksp. Teor.
Fiz., 1969, vol. 56, p. 2057–2058 (in Russian).
14. Pushkarov I. To the theory of the motion of impurities in solid 4He. // Pis’ma Zh.
Eksp. Teor. Fiz., 1974, vol. 19, p. 751–752 (in Russian).
15. Kagan Yu., Maksimov L.A. Theory of particle transport in extrimely narrow bands.
// Zh. Eksp. Teor. Fiz., 1973, vol. 65, p. 622–639 (in Russian).
16. Kagan Yu., Klinger M.I. Theory of quantum diffusion of atoms in crystals. //
J. Phys. C 1974, vol. 7, p. 2791–2808.
17. Slusarev V.A., Strzhemechnyi M.A., Burachovich I.A. Quantum diffusion of 3He in
solid 4He. I. The role of impurity interaction anisotropy. // Fiz. Nizk. Temp., 1977,
vol. 3, p. 1229–1240 (in Russian).
18. Slusarev V.A., Strzhemechnyi M.A., Burachovich I.A. Quantum diffusion of 3He in
solid 4He. II. Tunneling-jumping approximation. // Fiz. Nizk. Temp., 1978, vol. 4,
p. 698–705 (in Russian).
19. Golub A.A., Svatko S.V. Density dependence of the thermal conductivity of HCP 3He
in 4He solutions. // Fiz. Nizk. Temp., 1981, vol. 7, p. 970–976 (in Russian).
20. Grigor’ev V.N., Esel’son B.N., Mikheev V.A. New peculiarities of quantum diffusion
of 3He in solid helium. // Pis’ma Zh. Eksp. Teor. Fiz., 1973, vol. 18, p. 289–291 (in
Russian).
21. Grigor’ev V.N., Esel’son B.N., Mikheev V.A., et al. 3He impurity excitations in solid
4He. // J. Low Temp. Phys., 1973, vol. 13, p. 65–86.
22. Grigor’ev V.N, Esel’son B.N., Mikheev V.A. Diffusion of 3He in BCC- and HCP-phases
of solid solutions of helium isotopes. // Zh. Eksp. Teor. Fiz., 1974, vol. 66, p. 321–329
(in Russian).
23. Esel’son B.N., Grigor’ev V.N., Ivonsov V.G, et al. Solutions of Quantum Liquids 3He-
4He. Nauka, Moscow, 1973 (in Russian).
73
I.N.Adamenko et al.
Дифузія у двокомпонентних системах квазічастинок
рідких та твердих сумішей ізотопів гелію
І.Н.Адаменко 1 , К.Е.Немченко 1 , А.В.Жуков 1 ,
Томас Ф. Джордж 2 , Лакшмі Н. Пенді 3 , Чанґ-Ін Ум 4
1 Харківський державний університет,
310077 Харків, пл. Свободи, 4
2 Університет Вісконсіна – Стівенс Пойнт,
факультети хімії, фізики і астрономії, Вісконсін 54481–3897, США
3 Університет штату Вашінгтон, факультети хімії і фізики,
Пуллмен, Вашінгтон 99164–4630, США
4 Університет Кореї, факультет фізики, коледж природничих наук,
Сеул 136–701, Корея
Отримано 5 грудня 1997 р.
Виходячи з системи кiнетичних рiвнянь для компонент сумiшi отри-
мано точний вираз для дифузiйного часу, що залежить вiд взаємодiї
частинок не тiльки рiзних, а й одного типу. Отриманий результ спра-
ведливий для частинок з довiльною дисперсiєю і статистикою. Одер-
жаний точний вираз використовується для дослiдження дифузiї у рiд-
ких та твердих квантових розчинах 3He-4He. Проаналiзовано вне-
сок взаємодiї мiж квазiчастинками однакових типiв у коефiцiєнт ди-
фузiї та теплопровiдностi надплинних розчинiв. Обчисленi результа-
ти порiвнюються з iснуючими експериментальними даними. Отри-
маний коефiцiєнт дифузiї для твердих квантових розчинiв 3He-4He
iстотно вiдрiзняється від попереднiх результатiв теорiї. Порiвняння
цього результату з експериментальними даними дозволило дiстати
числове значення для енергетичної зони квазiчастинок домiшки.
Ключові слова: дифузія, теплопровідність, гелій, квантова рідина,
квантове тверде тіло, надплинність, суміш 3He-4He, фонони,
ротони, домішки.
PACS: 51.20.+d, 67.80.Mg
74
|