Shapes of macromolecules in good solvents: field theoretical renormalization group approach
In this paper, we show how the method of field theoretical reno rmalization group may be used to analyze universal shape properties of long polymer chains in porous environment. So far such analytical calculations were primarily focussed on the scaling exponents that govern conformational properties...
Saved in:
| Published in: | Condensed Matter Physics |
|---|---|
| Date: | 2011 |
| Main Authors: | , , |
| Format: | Article |
| Language: | English |
| Published: |
Інститут фізики конденсованих систем НАН України
2011
|
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/120035 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | Shapes of macromolecules in good solvents: field theoretical renormalization group approach/ V. Blavatska, C. von Ferber, Yu. Holovatch // Condensed Matter Physics. — 2011. — Т. 14, № 3. — С. 33701: 1-20. — Бібліогр.: 45 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-120035 |
|---|---|
| record_format |
dspace |
| spelling |
Blavatska, V. von Ferber, C. Holovatch, Yu. 2017-06-10T19:21:52Z 2017-06-10T19:21:52Z 2011 Shapes of macromolecules in good solvents: field theoretical renormalization group approach/ V. Blavatska, C. von Ferber, Yu. Holovatch // Condensed Matter Physics. — 2011. — Т. 14, № 3. — С. 33701: 1-20. — Бібліогр.: 45 назв. — англ. 1607-324X PACS: 75.10.Hk, 11.10.Hi, 12.38.Cy DOI:10.5488/CMP.14.33701 arXiv:1106.2042 https://nasplib.isofts.kiev.ua/handle/123456789/120035 In this paper, we show how the method of field theoretical reno rmalization group may be used to analyze universal shape properties of long polymer chains in porous environment. So far such analytical calculations were primarily focussed on the scaling exponents that govern conformational properties of polymer macromolecules. However, there are other observables that along with the scaling exponents are universal (i.e. independent of the chemical structure of macromolecules and of the solvent) and may be analyzed within the renormalization group approach. Here, we address the question of shape which is acquired by the long flexible polymer macromolecule when it is immersed in a solve nt in the presence of a porous environment. This question is of relevance for understanding of the behavior of macromolecules in colloidal solutions, near microporous membranes, and in cellular environment. To this end, we consider a previously suggested model of polymers in d-dimensions [V. Blavats’ka, C. von Ferber, Yu. Holovatch, Phys. Rev. E, 2001, 64, 041102] in an environment with structural obstacles, characterized by a pair correlation function h(r), that decays with distance r according to a power law: h(r) ∼ r−a. We apply the field-theoretical renormalization group ap-proach and estimate the size ratio hR²ei/hR²Gi and the asphericity ratio Aˆd up to the first order of a double ε = 4−d, δ = 4−a expansion. У статтi ми показуємо, яким чином можна застосувати метод теоретико-польової ренормалiзацiйної групи для аналiзу унiверсальних властивостей форм довгих гнучких полiмерних ланцюгiв у пористому середовищi. До цього часу такi аналiтичнi розрахунки в основному торкались показникiв скей-лiнгу, що визначають конформацiйнi властивостi полiмерних макромолекул. Проте, iснують й iншi спостережуванi величини, що, як i показники скейлiнгу, є унiверсальними (тобто незалежними вiд хiмiчної структури як макромолекул, так i розчинника), а отже можуть бути проаналiзованi в межах пiдходу ренормалiзацiйної групи. Ми цiкавимось питанням, якої форми набуває довга гнучка полiмерна макромолекула у розчинi в присутностi пористого середовища. Це питання є суттєвим для розумiння поведiнки макромолекул у колоїдних розчинах, поблизу мiкропористих мембран, а також у клiтинному середовищi. Ми розглядаємо запропоновану ранiше модель полiмера у d-вимiрному просторi [V. Blavats’ka, C. von Ferber, Yu. Holovatch, Phys. Rev. E, 2001, 64, 041102] у середовищi iз структурними неоднорiдностями, що характеризуються парною кореляцiйною функцiєю h(r), яка спадає iз вiдстанню r згiдно степеневого закону: h(r) ∼ r−a. Застосовуємо пiдхiд теоретико-польової ре-нормалiзацiйної групи i оцiнюємо вiдношення розмiрiв hR²ei/hR²Gi та асферичнiсть Aˆd до першого порядку ε = 4−d, δ = 4−a-розкладу. en Інститут фізики конденсованих систем НАН України Condensed Matter Physics Shapes of macromolecules in good solvents: field theoretical renormalization group approach Форми макромолекул у хороших розчинниках: пiдхiд теоретико-польової ренормалiзацiйної групи Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Shapes of macromolecules in good solvents: field theoretical renormalization group approach |
| spellingShingle |
Shapes of macromolecules in good solvents: field theoretical renormalization group approach Blavatska, V. von Ferber, C. Holovatch, Yu. |
| title_short |
Shapes of macromolecules in good solvents: field theoretical renormalization group approach |
| title_full |
Shapes of macromolecules in good solvents: field theoretical renormalization group approach |
| title_fullStr |
Shapes of macromolecules in good solvents: field theoretical renormalization group approach |
| title_full_unstemmed |
Shapes of macromolecules in good solvents: field theoretical renormalization group approach |
| title_sort |
shapes of macromolecules in good solvents: field theoretical renormalization group approach |
| author |
Blavatska, V. von Ferber, C. Holovatch, Yu. |
| author_facet |
Blavatska, V. von Ferber, C. Holovatch, Yu. |
| publishDate |
2011 |
| language |
English |
| container_title |
Condensed Matter Physics |
| publisher |
Інститут фізики конденсованих систем НАН України |
| format |
Article |
| title_alt |
Форми макромолекул у хороших розчинниках: пiдхiд теоретико-польової ренормалiзацiйної групи |
| description |
In this paper, we show how the method of field theoretical reno rmalization group may be used to analyze universal shape properties of long polymer chains in porous environment. So far such analytical calculations were primarily focussed on the scaling exponents that govern conformational properties of polymer macromolecules. However, there are other observables that along with the scaling exponents are universal (i.e. independent of the chemical structure of macromolecules and of the solvent) and may be analyzed within the renormalization group approach. Here, we address the question of shape which is acquired by the long flexible polymer macromolecule when it is immersed in a solve nt in the presence of a porous environment. This question is of relevance for understanding of the behavior of macromolecules in colloidal solutions, near microporous membranes, and in cellular environment. To this end, we consider a previously suggested model of polymers in d-dimensions [V. Blavats’ka, C. von Ferber, Yu. Holovatch, Phys. Rev. E, 2001, 64, 041102] in an environment with structural obstacles, characterized by a pair correlation function h(r), that decays with distance r according to a power law: h(r) ∼ r−a. We apply the field-theoretical renormalization group ap-proach and estimate the size ratio hR²ei/hR²Gi and the asphericity ratio Aˆd up to the first order of a double ε = 4−d, δ = 4−a expansion.
У статтi ми показуємо, яким чином можна застосувати метод теоретико-польової ренормалiзацiйної групи для аналiзу унiверсальних властивостей форм довгих гнучких полiмерних ланцюгiв у пористому середовищi. До цього часу такi аналiтичнi розрахунки в основному торкались показникiв скей-лiнгу, що визначають конформацiйнi властивостi полiмерних макромолекул. Проте, iснують й iншi спостережуванi величини, що, як i показники скейлiнгу, є унiверсальними (тобто незалежними вiд хiмiчної структури як макромолекул, так i розчинника), а отже можуть бути проаналiзованi в межах пiдходу ренормалiзацiйної групи. Ми цiкавимось питанням, якої форми набуває довга гнучка полiмерна макромолекула у розчинi в присутностi пористого середовища. Це питання є суттєвим для розумiння поведiнки макромолекул у колоїдних розчинах, поблизу мiкропористих мембран, а також у клiтинному середовищi. Ми розглядаємо запропоновану ранiше модель полiмера у d-вимiрному просторi [V. Blavats’ka, C. von Ferber, Yu. Holovatch, Phys. Rev. E, 2001, 64, 041102] у середовищi iз структурними неоднорiдностями, що характеризуються парною кореляцiйною функцiєю h(r), яка спадає iз вiдстанню r згiдно степеневого закону: h(r) ∼ r−a. Застосовуємо пiдхiд теоретико-польової ре-нормалiзацiйної групи i оцiнюємо вiдношення розмiрiв hR²ei/hR²Gi та асферичнiсть Aˆd до першого порядку ε = 4−d, δ = 4−a-розкладу.
|
| issn |
1607-324X |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/120035 |
| citation_txt |
Shapes of macromolecules in good solvents: field theoretical renormalization group approach/ V. Blavatska, C. von Ferber, Yu. Holovatch // Condensed Matter Physics. — 2011. — Т. 14, № 3. — С. 33701: 1-20. — Бібліогр.: 45 назв. — англ. |
| work_keys_str_mv |
AT blavatskav shapesofmacromoleculesingoodsolventsfieldtheoreticalrenormalizationgroupapproach AT vonferberc shapesofmacromoleculesingoodsolventsfieldtheoreticalrenormalizationgroupapproach AT holovatchyu shapesofmacromoleculesingoodsolventsfieldtheoreticalrenormalizationgroupapproach AT blavatskav formimakromolekuluhorošihrozčinnikahpidhidteoretikopolʹovoírenormalizaciinoígrupi AT vonferberc formimakromolekuluhorošihrozčinnikahpidhidteoretikopolʹovoírenormalizaciinoígrupi AT holovatchyu formimakromolekuluhorošihrozčinnikahpidhidteoretikopolʹovoírenormalizaciinoígrupi |
| first_indexed |
2025-11-26T22:50:38Z |
| last_indexed |
2025-11-26T22:50:38Z |
| _version_ |
1850779021966573568 |
| fulltext |
Condensed Matter Physics, 2011, Vol. 14, No 3, 33701: 1–20
DOI: 10.5488/CMP.14.33701
http://www.icmp.lviv.ua/journal
Shapes of macromolecules in good solvents:
field theoretical renormalization group approach∗
V. Blavatska1, C. von Ferber2,3, Yu. Holovatch1
1 Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine,
1 Svientsitskii Str., 79011 Lviv, Ukraine
2 Applied Mathematics Research Centre, Coventry University, CV1 5FB Coventry, UK
3 Theoretische Polymerphysik, Universität Freiburg, 79104 Freiburg, Germany
Received May 11, 2011
In this paper, we show how the method of field theoretical renormalization group may be used to analyze
universal shape properties of long polymer chains in porous environment. So far such analytical calcula-
tions were primarily focussed on the scaling exponents that govern conformational properties of polymer
macromolecules. However, there are other observables that along with the scaling exponents are universal
(i.e. independent of the chemical structure of macromolecules and of the solvent) and may be analyzed within
the renormalization group approach. Here, we address the question of shape which is acquired by the long
flexible polymer macromolecule when it is immersed in a solvent in the presence of a porous environment.
This question is of relevance for understanding of the behavior of macromolecules in colloidal solutions, near
microporous membranes, and in cellular environment. To this end, we consider a previously suggested model
of polymers in d-dimensions [V. Blavats’ka, C. von Ferber, Yu. Holovatch, Phys. Rev. E, 2001, 64, 041102] in
an environment with structural obstacles, characterized by a pair correlation function h(r), that decays with
distance r according to a power law: h(r) ∼ r−a. We apply the field-theoretical renormalization group ap-
proach and estimate the size ratio 〈R2
e 〉/〈R
2
G〉 and the asphericity ratio Âd up to the first order of a double
ε = 4−d, δ = 4−a expansion.
Key words: polymer, quenched disorder, renormalization group
PACS: 75.10.Hk, 11.10.Hi, 12.38.Cy
1. Introduction
Polymer theory belongs to and uses methods of different fields of science: physics, physical
chemistry, chemistry, and material science being the principal ones. Historically, the structure
of polymers remained under controversial discussion until, under the influence of the work by
Hermann Staudinger [1], the idea of long chain-like molecules became generally accepted. In this
paper we will concentrate on the universal properties of long polymer chains immersed in a good
solvent, i.e. the properties that do not depend on the chemical structure of macromolecules and of
the solvent. Usually a self-avoiding walk model is used to analyze such properties [2, 3]. At first
glance such a model is a rough caricature of a polymer macromolecule since out of its numerous
inherent features it takes into account only its connectivity and the excluded volume modeled by
a delta-like self-avoidance condition. However, it is widely recognized by now that the universal
conformational properties of polymer macromolecules are perfectly described by the model of self-
avoiding walks. It is instructive to note that the idea to describe polymers in terms of statistical
mechanics appeared already in early 30-ies due to Werner Kuhn [4] and already then enabled
an understanding and a qualitative description of their properties. The present success in their
analytic description which has lead to accurate quantitative results is to a large extent due to the
application of field theoretic methods. In the pioneering papers by Pierre Gilles de Gennes and his
school [2] an analogy was shown between the universal behaviour of spin systems near the critical
∗A paper dedicated to Prof. Yurij Kalyuzhnyi on the occasion of his 60th birthday.
c© V. Blavatska, C. von Ferber, Yu. Holovatch, 2011 33701-1
http://dx.doi.org/10.5488/CMP.14.33701
http://www.icmp.lviv.ua/journal
V. Blavatska, C. von Ferber, Yu. Holovatch
point and the behaviour of long polymer macromolecules in a good solvent. In turn, this made it
possible to apply the methods of field theoretical renormalization group [5] to polymer theory.
In spite of its success in explaining the universal properties of polymer macromolecules, the
self-avoiding walk model does not encompass a variety of other polymer features. Different models
and different methods are used for these purposes. In the context of this Festschrift it is appropriate
to mention the approach based on the integral-equation techniques which is actively developed by
Yurij Kalyuzhnyi and his numerous colleagues [6]. In particular, this approach has enabled an
analytic description of chemically associating fluids and the representation of the most important
generic properties of certain classes of associating fluids [7]. It is our pleasure and honor to write
a paper dedicated to Yurij Kalyuzhnyi on the occasion on his 60th birthday and doing so to wish
him many more years of fruitful scientific activity and to acknowledge our numerous common
experiences in physics and not only therein.
In this paper we will analyze the shapes of polymer macromolecules in a good solvent. Flexible
polymer macromolecules in dilute solutions form crumpled coils with a global shape, which greatly
differs from spherical symmetry and is surprisingly anisotropic, as it has been found experimentally
and confirmed in many analytical and numerical investigations [8–22]. Topological properties of
macromolecules, such as the shape and size of a typical polymer chain configuration, are of interest
in various respects. The shape of proteins affects their folding dynamics and motion in a cell
and is relevant in comprehending complex cellular phenomena, such as catalytic activity [23].
The hydrodynamics of polymer fluids is essentially affected by the size and shape of individual
macromolecules [24]; the polymer shape plays an important role in determining its molecular
weight in gel filtration chromatography [25]. Below we will show how the shape can be quantified
within universal characteristics and how to calculate these characteristics analytically.
The set up of this paper is as follows. In the next section we present some details of the first an-
alytical attempt to study the shape of linear polymers in good solvent, performed by Kuhn in 1934.
Since then, the study of topological properties of polymer macromolecules was developed, based on
a mathematical description, which is presented in section 3 along with a short review of the known
results for shape characteristics of flexible polymers. In section 4, we present details of the appli-
cation of the field-theoretical renormalization group approach to the study of universal polymer
shape characteristics. Section 5 concerns the effect of structural disorder in the environment on the
universal properties of polymer macromolecules. The model with long-range-correlated quenched
defects is exploited, and the shape characteristics are estimated in a field-theoretical approach. We
close by giving conclusions and an outlook.
2. Shape of a flexible polymer: Kuhn’s intuitive approach
The subject of primary interest in this paper will be the shape of a long flexible polymer
macromolecule. That is, assuming that a polymer coil constitutes of a large sequence of monomers,
does this coil resemble a globe (which would be the naive expectation taken that each monomer
is attached at random) or does its shape possess anisotropy. And, if it is anisotropic, what are the
observables to describe it quantitatively? In this section we start our analysis with a very simple
model that allows us to make some quantitative conclusions. The aim of the calculations given
below is to explain how the anisotropy of the polymer shape arises already within a random walk
model. That is to show that the anisotropy is essentially not an excluded volume effect (although
its strength is effected by the excluded volume interaction as we will show in this paper) but rather
it is an intrinsic property arising from random walk statistics.
The analysis given below is inspired by Kuhn’s seminal paper [4]. However, Kuhn’s explanation
is based on combinatorial analysis and application of Stirling formula, while here we suggest a
derivation based on the application of Bayesian probability [26]. Let us consider the so-called
Gaussian freely jointed chain model consisting of N connected bonds capable of pointing in any
direction independently of each other. Any typical configuration of such a chain can be represented
by the set of bond vectors {~an}, n = 1, . . . , N , such that:
〈~a2i 〉 = a2 = dℓ2, (2.1)
33701-2
Shapes of macromolecules in good solvents: field theoretical renormalization group approach
(a)
N/2N/4
0
N
r2
r3
r1
r(0)
(b)
r(T)
Figure 1. a) Schematic presentation of a polymer chain with the end-to-end distance (position
vector of Nth monomer) denoted as ~r1 . The component of the position vector of N/2th monomer
in direction perpendicular to ~r1 is denoted by ~r2 . Vector ~r3 denotes the component of position
vector of N/4th monomer in direction perpendicular to both ~r1 and ~r2 . b) In the Edwards
continuous chain model, the polymer is represented by a path ~r(t) parameterized by 0 6 t 6 T
(see section 4).
here d is the space dimension and the angular brackets stand for averaging with respect to different
possible orientations of each bond. Fixing the starting point of the chain at the origin, one gets for
the end-to-end distance ~Re and its mean square:
~Re =
N
∑
i=1
~ai , 〈~R2
e〉 = Na2. (2.2)
To get the second relation, one has to take into account that 〈~ai~aj〉 = 0 for i 6= j, since random
variables ~ai are uncorrelated. Due to the central limit theorem, the distribution function of the
random variable Re = |~Re| takes on a Gaussian form:
P (Re) =
( d
2π〈R2
e〉
)d/2
e
−
dR2
e
2〈R2
e
〉 . (2.3)
Numerical factors in (2.3) can be readily obtained from the normalization conditions for the distri-
bution function and its second moment. Let us consider the three-dimensional (d = 3) continuous
chain, such that
P (Re)dRe =
( 1
2πNℓ2
)3/2
e−
R2
e
2Nℓ2 4πR2
edRe , (2.4)
defines the probability that the end point of the chain is located in the interval between Re and
Re +dRe . Following Kuhn, let us take the mean value of Re as one of the shape characteristics of
a chain and denote it by r1 ≡ 〈Re〉. One gets for its value:
r1 ≡
∞
∫
0
ReP (Re)dRe = 2ℓ
√
2N
π
. (2.5)
To introduce two more observables that will characterize the shape of the chain, let us proceed
as follows. Having defined the end-to-end vector ~Re , let us point the z-axis along this vector (see
figure 1 (a)). Now, since both the starting and the end points of the chain belong to the z-axis, the
projection of the polymer coil on the xy-plane has a form of a loop. It is natural to expect that
the largest deviation of a point on this loop from the origin corresponds to the N/2th step. Let
us find the distance in the plane from the origin to this point (we will denote it by r2 hereafter)
and take it as another shape characteristics of the chain. Note, that vector ~r2 lies in the xy-plain
and therefore is two-dimensional. To do so, we have to find the distribution function of a position
33701-3
V. Blavatska, C. von Ferber, Yu. Holovatch
vector of a point on a loop. It is convenient to find such a distribution using the Bayes theorem
for conditional probability [26]. The theorem relates the conditional and marginal probabilities of
events A and B, provided that the probability of B does not equal zero:
P (A|B) =
P (B|A)P (A)
P (B)
. (2.6)
In our case, P (A|B) ≡ P2(r) is the probability that the coordinate of the chain after N/2th step is
given by a (now two-dimensional) vector ~r under the condition, that after N steps its coordinate is
r = 0. Then, P (B|A) is the probability for the chain that begins at the point with the coordinate
~r after N/2 steps to return to the origin. Correspondingly, the prior probability P (A) is the
probability that the coordinate of the chain after N/2th step is given by a vector ~r (it is the so-
called “unconditional” or “marginal” probability of A, in our case it is given by equation (2.3) for
d = 2). P (B) is the prior or marginal probability of B, in our case this is the probability for the
chain that starts at the origin to return back in N steps, i.e. a probability of a loop of N steps.
Realizing that for our case P (A) = P (B|A), that is probabilities to reach point ~r starting from the
origin is equal to the probability to reach the origin starting from the point ~r we get:
P2(r) = P (A)2/P (B), (2.7)
where P (A) is given by equation (2.3) for d = 2 and P (B) may be found from the normalization
condition. In the continuous chain representation we get for the probability that the N/2th bond
of the chain is located in the interval between r and r + dr:
P2(r)dr =
1
2πN/2ℓ2
1
P (B)
e
− r2
2N/2ℓ2 e
− r2
2N/2ℓ2 2πrdr. (2.8)
The mean value r2 follows:
r2 ≡
∞
∫
0
rP2(r)dr =
4
Nℓ2
∞
∫
0
e−
2 r2
Nℓ2 r2dr = ℓ
√
πN
8
. (2.9)
Now, let us point an x-axis along ~r2 (again see figure 1 (a)) and repeat the above reasonings
concerning the maximal distance in y-coordinate, i.e. concerning the y-coordinate of the N/4th step
of the chain. We will denote it by r3 . The result readily follows by the analogy with equation (2.9)
taking into account that now the radius-vector is one-dimensional:
r3 ≡
∞
∫
0
rP3(r)dr =
( 16
πNℓ2
)1/2
∞
∫
0
e−
4 r2
Nℓ2 rdr =
ℓ
2
√
N
π
. (2.10)
Comparing (2.5), (2.9), and (2.10) one concludes that the shape of the chain is characterized
by three unequal sizes r1 , r2 , and r3 with the following relations:
r1
r2
=
8
π
≃ 2.55,
r1
r3
= 4
√
2 ≃ 5.66. (2.11)
The above relations were first obtained by Kuhn [4] and lead to the conclusion that a polymer chain
even if considered as a chain of mutually intersecting steps (i.e. without account of an excluded
volume effect) does not have a shape of a sphere but rather resembles an ellipsoid with unequal
axes1. To check how this prediction holds, we have performed numerical simulations of random
walks on simple cubic lattices, constructing trajectories with the number of steps N up to 400
and performing the averaging over 106 configurations. As one can see from figure 2, the results of
simulations are in perfect agreement with the data of (2.11).
1As it was stated in Kuhn’s paper, the most probable shape of a polymer is a bend ellipsoid, of a bean-like shape:
“. . . verbogenes Ellipsoids (etwa die Form einer Bohne). . . ” [4].
33701-4
Shapes of macromolecules in good solvents: field theoretical renormalization group approach
a) b)
Figure 2. Ratios r1/r2 (a) and r1/r3 (b) as functions of the chain length, results of computer
simulations. Analytic estimates give: r1/r2 ≃ 2.55 and r1/r3 ≃ 5.66 (see equations (2.5), (2.9),
(2.10)).
Here it is worth mentioning another far going prediction of the same paper [4]. Discussing
how might the excluded volume effect the polymer size, Kuhn arrives at the relation between
the mean square end-to-end distance and the number of monomers which in our notations reads:
√
〈~R2
e〉 = ℓNν with ν = 1/2 + ǫ. Although this result is suggested on purely phenomenological
grounds, its amazing feature is that the power-law form of the dependence is correctly predicted
(cf. equation (3.4) from the forthcoming section). Moreover, Kuhn has estimated ǫ by considering
the excluded volume effect for a 5-segment chain for which he found an increase of 20%, a result
we have verified by exact enumerations. Assuming the power law form, ǫ is estimated as: ǫ ≈ 0.11
and thus ν ≈ 0.61, which is perfectly confirmed later, e.g. by Flory theory [2], which in d = 3 gives
ν = 3/5. The notation for the correction used by Kuhn by coincidence is the same as that used
much later in the famous ε-expansion [5] to develop a perturbation theory for calculation of this
power law by means of the renormalization group technique (see equation (4.12) for the first order
result). Before explaining how this theory is applied to calculate polymer shape characteristics, let
us introduce observables in terms of which such description is performed.
3. Description of polymer shape in terms of gyration tensor and combina-
tions of its components
Let ~Rn = {x1
n , . . . , x
d
n} be the position vector of the nth monomer of a polymer chain (n =
1, . . . , N). The mean square of the end-to-end distance Re of a chain thus reads:
〈R2
e〉 = 〈|~RN − ~R1|2〉, (3.1)
here and below, 〈. . .〉 denotes the averaging over the ensemble of all possible polymer chain con-
figurations. The basic shape properties of a specified spatial conformation of the chain can be
characterized [8, 9] in terms of the gyration tensor Q with components:
Qij =
1
N
N
∑
n=1
(xi
n − xi
CM)(xj
n − xj
CM), i, j = 1, . . . , d, (3.2)
with xi
CM =
∑N
n=1 x
i
n/N being the coordinates of the center-of-mass position vector ~RCM .
The spread in the eigenvalues λi of the gyration tensor describes the distribution of monomers
inside the polymer coil and thus measures the asymmetry of the molecule; in particular, for a
symmetric (spherical) configuration all the eigenvalues λi are equal, whereas for the so-called
33701-5
V. Blavatska, C. von Ferber, Yu. Holovatch
a) b) c)
Figure 3. Seen from far away, polymer coil may resemble the objects of different from. Here, we
distinguish sphere-like (a), prolate (b), and oblate (c) conformations. Eigenvalues of correspond-
ing gyration tensor (3.2) satisfy: λ1 ≃ λ2 ≃ λ3 (a), λ1 > λ2 ≃ λ3 (b), and λ1 ≃ λ2 > λ3 (c).
Correspondingly, asphericity (3.6) and prolateness (3.7) of these conformations satisfy: Ad = 0,
S = 0 (a), 0 < Ad < 1, 0 < S 6 2 (b), 0 < Ad < 1, −1/4 6 S < 0 (c). See the text for more
details.
prolate and oblate configurations in d = 3 (see figure 3) the eigenvalues satisfy λ1 ≫ λ2 ≈ λ3
and λ1 ≈ λ2 ≫ λ3 correspondingly. Solc and Stockmayer [8] introduced the normalized average
eigenvalues λi of the gyration tensor as a shape measure of macromolecules. Numerical simulations
in d = 3 dimensions give {〈λ1〉, 〈λ2〉, 〈λ3〉}={0.790, 0.161, 0.054} [16], indicating a high anisotropy
of typical polymer configurations compared with the purely isotropic case {1/3, 1/3, 1/3}.
While in simulations the eigenvalues of the gyration tensor Q can easily be calculated and
averaged, different invariants have been devised for theoretical calculations. As far as Q has three
eigenvalues in d = 3, one may construct three independent combinations of invariants. These are
the square radius of gyration R2
G , the asphericity Ad and the prolateness S as elaborated in the
following. The first invariant of Q is the squared radius of gyration
R2
G =
1
N
N
∑
n=1
(~Rn − ~RCM)2 =
d
∑
i=1
Qii = TrQ , (3.3)
which measures the distribution of monomers with respect to the center of mass. To characterize
the size measure of a single flexible polymer chain, one usually considers the mean-squared end-
to-end distance 〈R2
e〉 (3.1) and radius of gyration 〈R2
G〉 (3.3), both governed by the same scaling
law:
〈R2
e〉 ∼ 〈R2
G〉 ∼ N2ν , (3.4)
where N is the mass of the macromolecule (number of monomers in a polymer chain) and ν is
a universal exponent (ν > 1/2 (d < 4), ν = 1/2 (d > 4)). The ratio of these two characteristic
distances, the so-called size ratio:
gd ≡ 〈R2
e〉/〈R2
G〉, (3.5)
appears to be a universal, rotationally-invariant quantity (gd > 6 (d < 4), gd = 6 (d > 4)) [15].
Let λ ≡ TrQ/d be the mean eigenvalue of the gyration tensor. Then one may characterize the
extent of asphericity of a polymer chain configuration by the quantity Ad defined as [10]:
Ad =
1
d(d− 1)
d
∑
i=1
(λi − λ)2
λ
2 =
d
d− 1
Tr Q̂2
(TrQ)2
, (3.6)
with Q̂ ≡ Q− λ I (here I is the unity matrix). This universal quantity equals zero for a spherical
configuration, where all the eigenvalues are equal, λi = λ, and takes a maximum value of one in
33701-6
Shapes of macromolecules in good solvents: field theoretical renormalization group approach
the case of a rod-like configuration, where all the eigenvalues equal zero except one. Thus, the
inequality holds: 0 6 Ad 6 1. Another rotational invariant quantity, defined in three dimensions,
is the so-called prolateness S:
S =
∏3
i=1(λi − λ)
λ
3 = 27
detQ̂
(TrQ)3
. (3.7)
If the polymer is absolutely prolate, rod-like (λ1 6= 0, λ2 = λ3 = 0), it is easy to see that S
equals two. For absolutely oblate, disk-like conformations (λ1 = λ2 , λ3 = 0), this quantity takes
on a value of −1/4, while for a spherical configuration S = 0. In general, S is positive for prolate
ellipsoid-like polymer conformations (λ1 ≫ λ2 ≈ λ3) and negative for oblate ones (λ1 ≈ λ2 ≫ λ3),
whereas its magnitude measures how much oblate or prolate the polymer is. Note that since λ and
the quantities in (3.3)–(3.7) are expressed in terms of rotational invariants, there is no need to
explicitly determine the eigenvalues λi which greatly simplifies the calculations.
The average of the quantities (3.3)–(3.7) for a given polymer chain length N , denoted as 〈. . .〉,
is performed over an ensemble of possible configurations of a chain. Note that some analytical
and numerical approaches avoid the averaging of the ratio in (3.6), (3.7) and evaluate the ratio of
averages:
Âd =
1
d(d− 1)
d
∑
i=1
〈(λi − λ)2〉
〈λ2〉
, Ŝ =
∏3
i=1〈(λi − λ)〉
〈λ3〉
, (3.8)
which should be distinguished from the averaged asphericity and prolateness:
〈Ad〉 =
1
d(d− 1)
〈
d
∑
i=1
(λi − λ)2
λ
2
〉
, 〈S〉 =
〈
∏3
i=1(λi − λ)
λ
3
〉
. (3.9)
Contrary to 〈Ad〉 and 〈S〉, the quantities (3.8) have no direct relation to the probability distribution
of the shape parameters Ad and S. As pointed out by Cannon [11], this definition overestimates the
effect of larger polymer configurations on the mean shape properties and suppresses the effect of
compact ones. This artificially leads to overestimated values for shape parameters. The difference
between 〈Ad〉 and Âd was found to be great (see table 1).
Table 1. Size ratio, averaged asphericity and prolateness of flexible polymer chains on regular
two- and three-dimensional lattices. MC: Monte Carlo simulations, DR: direct renormalization
approaches. a: reference [13], b: [12], c: [17], d: [10], e: [14].
d Method gd 〈Ad〉 Âd 〈S〉 Ŝ
2 MC 7.14± 0.03a 0.501± 0.003b 0.625± 0.008b – –
2 DR 7.003c – 0.558d – 0.899d
3 MC 6.249± 0.03e 0.431± 0.002e 0.546± 0.008b 0.541± 0.004e –
3 DR 6.258c 0.415e 0.529d – 0.893d
Numerous experimental studies indicate that a typical flexible polymer chain in good solvent
takes on the shape of an elongated, prolate ellipsoid, similar to what was shown in section 3 for a
random walk. In particular, using the data of x-ray crystallography and cryo-electron microscopy,
it was found that the majority of non-globular proteins are characterized by A3 values from 0.5
to 0.7 and S values from 0 to 0.6 [21, 22]. The shape parameters of polymers were analyzed
analytically, based on the direct renormalization group approach [10, 14, 17], and estimated in
numerical simulations [8, 12, 13, 18]. Table 1 gives typical data for the above introduced shape
characteristics of long flexible polymer chains in d = 2 and d = 3.
33701-7
V. Blavatska, C. von Ferber, Yu. Holovatch
Since the above shape and size characteristics of polymer macromolecules are universal, i.e.
independent of the details of their chemical structure, they were (along with polymer scaling
exponents) the subject of analysis by field-theoretical renormalization group approaches. In the
subsequent section we will introduce this approach as used to calculate polymer shapes.
4. Field-theoretical renormalization group approach to define
polymer shape
Aronovitz and Nelson [10] developed a scheme, allowing one to compute the universal shape
parameters of long flexible polymers within the frames of advanced field theory methods.
Here, we start with the Edwards continuous chain model [27], representing the polymer chain
by a path ~r(t), parameterized by 0 6 t 6 T (see figure1 (b)). The system can be described by the
effective Hamiltonian H:
H =
1
2
T
∫
0
d t
(
d~r(t)
dt
)2
+
u0
4!
T
∫
0
dt
T
∫
0
dt′δd(~r(t)− ~r(t′)). (4.1)
The first term in (4.1) represents the chain connectivity, whereas the second term describes the
short range excluded volume interaction with coupling constant u0 .
In this scheme, the gyration tensor components (equation (3.2)) can be rewritten as:
Qij =
1
2T 2
T
∫
0
d t1
T
∫
0
d t2
[
ri(t1)− ri(t2)
] [
rj(t1)− rj(t2)
]
, i, j = 1, . . . , d. (4.2)
The model (4.1) may be mapped to a field theory by a Laplace transform from the Gaussian
surface T to the conjugated chemical potential variable (mass) µ0 according to [28, 29]:
Ẑ(µ0) =
∫
dT exp[−µ0T ]Z(T ), (4.3)
where Z(T ) =
∫
D[r] exp(−H) is the partition function of the system as function of the Gaussian
surface and
∫
D[r] means an integration over all possible path configurations [30]. Exploiting the
analogy between the polymer problem and O(m) symmetric field theory in the limit m → 0
(de Gennes limit) [2], it was shown [28] that the partition function of the polymer system is related
to the m = 0-component field theory with an effective Lagrangean:
L =
∫
ddx
[
1
2
(µ2
0|~φ(x)|2+|∇~φ(x)|2)+u0
4!
(~φ2(x))2
]
. (4.4)
Here, ~φ is an m-component vector field ~φ = (φ1, . . . , φm) and:
Ẑ(µ0) =
∫
D[ϕ]e−L. (4.5)
One of the ways of extracting the scaling behavior of the model (4.4), is to apply the field-
theoretical renormalization group (RG) method [5] in the massive scheme, with the Green’s func-
tions renormalized at non-zero mass and zero external momenta. The Green’s function G
(N,L)
0 can
be defined as an average of N field components and L ϕ2-insertions performed with the corre-
sponding effective Lagrangean L:
δ(
∑
ki+
∑
pj)G
(N,L)
0 ({k}; {p};µ2
0 ;u0) =
Λ0
∫
ei(kiRi+pjrj)〈φ2(r1) . . . φ
2(rL)φ(R1) . . . φ(RN )〉LeffddR1 . . .d
dRNddr1 . . .d
drL , (4.6)
33701-8
Shapes of macromolecules in good solvents: field theoretical renormalization group approach
here {k} = (k1 , . . . , kL), {p} = (p1 , . . . , pN ) are the sets of external momenta and Λ0 is a cut-
off [31]. The renormalized Green’s functions G
(N,L)
R are expressed in terms of the bare vertex
functions as follows:
G
(N,L)
0 ({k}; {p}; µ̂2
0;u0) = Z
N/2
φ Z−L
φ2 G
(N,L)
R ({k}; {p};µ2;u), (4.7)
where Zφ , Zφ2 are the renormalizing factors, µ, u are the renormalized mass and couplings.
The change of coupling constant u0 under renormalization defines a flow in parametric space,
governed by the corresponding β-function:
βu(u) =
∂u
∂ ln l
∣
∣
∣
0
, (4.8)
where l is the rescaling factor and
∣
∣
0
stands for evaluation at fixed bare parameters. The fixed
points (FP) of the RG transformation are given by the zeroes of the β-function. The stable FP u∗,
corresponding to the critical point of the system, is defined as the fixed point where ∂βu(u)
∂u |u=u∗
has a positive real part. The flow of renormalizing factors Zφ , Zφ2 defines the RG functions γφ(u),
γ̄φ2(u). These functions, evaluated at the stable accessible FP, allow us to estimate the critical
exponents.
Exploiting the perturbation theory expansion in parameter ε = 4 − d (deviation of space
dimension from the upper critical one), one receives within the above described scheme up to the
first order in ε the well-known results for the fixed points:
u∗
RW = 0 , stable for ε 6 0, (4.9)
u∗
SAW =
3ε
4
, stable for ε > 0. (4.10)
Here, uRW describes the case of simple random walks (idealized polymer chain without any in-
trachain interactions), and uSAW is the fixed point, governing the scaling of self-avoiding random
walks.
Evaluating the RG functions γφ(u) and γ̄φ2(u) at the above fixed points, one gets the familiar
first-order results (see e.g. [5]) for the critical exponents ν and γ, that govern the scaling of the
polymer mean size (3.4) and the number of configurations, correspondingly:
νRW =
1
2
, γRW = 1 , (4.11)
νSAW =
1
2
+
ε
16
, γSAW = 1+
ε
8
. (4.12)
Following reference [10], the averaged moments of gyration tensor Q (4.2), which are needed
to determine the polymer shape characteristics (3.3), (3.6), (3.7), can be expressed in terms of
renormalized connected Green’s functions (4.7), in particular:
〈Qij〉 = −1
2
(
T
2X̄
)2ν
Γ(γ)
Γ(γ+2ν+2)
Gij
G
(2)
R (0, 0, u∗)
, (4.13)
〈QijQkl〉 = −1
4
(
T
2X̄
)4ν
Γ(γ)
Γ(γ+4ν+4)
Gij|kl
G
(2)
R (0, 0, u∗)
. (4.14)
Here, the following notations are used:
Gij ≡
∂
∂qi
∂
∂qj
∣
∣
∣
q=0
G
(2,2)
R (0, 0; q,−q;u∗), (4.15)
Gij|kl =
∂
∂qi1
∂
∂qj1
∂
∂qk2
∂
∂ql2
∣
∣
∣
q=0
G
(2,4)
R (0, 0; q1 ,−q1 , q2 ,−q2 ;u
∗), (4.16)
X̄ is non-universal quantity, ν and γ are the critical exponents, ∂/∂qi1 means differentiation by the
i-component of vector q1 , G
(2,2)
R and G
(2,4)
R are the renormalized connected Green’s function with
33701-9
V. Blavatska, C. von Ferber, Yu. Holovatch
(e)
(a) (b) (c)
(d)
Figure 4. Contributions to the Green’s function G(2,2) up to one-loop level. Solid lines denote
propagators µ2+k2, wavy lines illustrate the insertions of the type ϕ2, loops imply integration
over internal momenta.
2 external legs and 2 insertions ϕ2(q), ϕ2(−q) and 4 insertions ϕ2(q1), ϕ
2(−q1), ϕ
2(q2), ϕ
2(−q2)
respectively, calculated at the fixed point for zero external momenta.
The isotropy of the original theory implies, in particular, that 〈TrQ〉 = d〈Qii〉, so that:
〈R2
G〉 = d〈Qii〉. (4.17)
The mean-squared end-to-end distance 〈R2
e〉 can be expressed as:
〈R2
e〉 = −
(
T
2X̄
)2ν
Γ(γ)
Γ(γ+2ν)
(
∇2
kG
(2)
R (k,−k, u∗)
)
∣
∣
∣
k=0
G
(2)
R (0, 0, u∗)
. (4.18)
where ∇2
k means differentiation over components of external momentum k.
One can easily convince oneself, that not-universal quantities cancel when the ratio (3.5) is
considered:
g ≡ 〈R2
e〉
〈R2
G〉
=
Γ(γ+2ν+2)
Γ(γ+2ν)
(
∇2
kG
(2)
R (k,−k, u∗)
) ∣
∣
∣
k=0
(
∇2
qG
(2,2)
R (0, 0; q,−q;u∗)
) ∣
∣
∣
q=0
. (4.19)
In derivation of (4.19) we made use of an obvious relation
∑d
i=1 Gii = ∇2G
(2,2)
R .
Computing the asphericity we follow equation (3.8) considering Âd as the ratio of averages:
Âd =
d
d− 1
〈Tr Q̂2〉
〈(TrQ)2〉 . (4.20)
This definition allows one to directly apply the renormalization group scheme described above, and
express the Âd in terms of the averaged moments of the gyration tensor (4.13), (4.14):
Âd =
〈Q2
ii〉+d〈Q2
ij〉 − 〈QiiQjj〉
〈Q2
ii〉+d(d− 1)〈QiiQjj〉
, i 6= j. (4.21)
One can again easily convince oneself that all the non-universal quantities in equations (4.13), (4.14)
cancel when calculating (4.21). Note that within the RG approach we will focuss only on two
universal shape characteristics, namely the size ratio (4.19) and asphericity (4.21), as far as the
calculation of prolateness S is particularly cumbersome.
To estimate (4.19), one needs to calculate the Green’s functions G(2,2), presented diagrammati-
cally in figure 4. Applying the renormalization procedure, as described above, one finds to the first
order of the renormalized coupling u (i.e., in the so-called one-loop approximation):
G
(2,2)
R (0, 0; q,−q;u) =
2
q2+1
− 4
3
1
q2+1
uI1(0, q)−
2
3
uI2(0, 0, q)+
4
3
1
q2+1
uI1(0, 0), (4.22)
33701-10
Shapes of macromolecules in good solvents: field theoretical renormalization group approach
(j)
(a) (b) (c)
(d) (e) (f)
(g) (h) (i)
Figure 5. Contributions to the Green’s function G(2,4) up to one-loop level. Solid lines denote
propagators µ2+k2, wavy lines illustrate the insertions of the type ϕ2, loops imply integration
over internal momenta.
the one-loop integrals Ii are listed in appendix A. Performing an ε = 4 − d-expansion of loop
integrals (see appendix A for details) and differentiating over components of vector q, we found:
(
∇2
qG
(2,2)
R (0, 0; q,−q;u)
)∣
∣
∣
q=0
= −4− 19
18
u, (4.23)
(
∇2
kG
(2)
R (k,−k)
) ∣
∣
∣
k=0
= −2. (4.24)
Substituting the values of fixed points (4.9) and (4.10) into the ratio of these functions, one receives
the corresponding value of the g-ratio:
gRW = 6 , (4.25)
gSAW = 6+
ε
16
. (4.26)
Equation (4.26) presents a first order correction to the g-ratio caused by excluded volume interac-
tions.
To compute the averaged asphericity ratio using (4.21), one needs the Green function G(2,4)
with four insertions ϕ2(q1)/2, ϕ
2(−q1)/2, ϕ
2(q2)/2, ϕ
2(−q2)/2, which is schematically presented in
figure 5. Applying the renormalization scheme described above, one receives an analytic expression
for the renormalized function G
(2,4)
R , given in the appendix B, equation (B1). Taking derivatives
over components of inserted vectors q1 , q2 and performing ε-expansions of the resulting expressions
(see appendix A for details) we arrive at the following expansions for the functions (4.15), (4.16):
Gxx = 576+
4028u
15
,
Gxx|yy = 320+
436u
3
,
Gxy|xy = 128+
308u
5
. (4.27)
Evaluating these relations at the fixed points (4.9), (4.10) and substituting into (4.13), (4.14),
33701-11
V. Blavatska, C. von Ferber, Yu. Holovatch
(4.21) one receives:
ÂRW
d =
1
2
, (4.28)
ÂSAW
d =
1
2
+
15
512
ε . (4.29)
We note, that result (4.28) means that even within the idealized model of simple random walks, the
shape of a polymer chain is highly anisotropic (cf. Kuhn’s picture, described in section 2). Taking
into account the excluded volume effect makes the polymer chain more extended and aspherical:
indeed, in three dimensions (ε = 1) the above obtained quantity reads: ÂSAW
d ≃ 0.53.
5. Polymer in porous environment: Model with long-range correlated disor-
der
In real physical processes, one is often interested how structural obstacles (impurities) in the
environment alter the behavior of a system. The density fluctuations of obstacles lead to a large
spatial inhomogeneity and create pore spaces, which are often of fractal structure [32]. In polymer
physics, it is of great importance to understand the behavior of macromolecules in the presence
of structural disorder, e.g., in colloidal solutions [33] or near the microporous membranes [34]. In
particular, a related problem concerns the protein folding dynamics in the cellular environment,
which can be considered as a highly disordered environment due to the presence of a large amount
of biochemical species, occupying up to 40% of the total volume [35]. Structural obstacles strongly
affect the protein folding [36]. Recently, it was realized experimentally [37] that macromolecular
crowding has a dramatic effect on the shape properties of proteins.
In the language of lattice models, a disordered environment with structural obstacles can be
considered as a lattice, where some amount of randomly chosen sites contain defects which are
to be avoided by the polymer chain. Of particular interest is the case when the concentration
of lattice sites allowed for the SAWs equals the critical concentration and the lattice is at the
percolation threshold. In this regime, SAWs belong to a new universality class, the scaling law (3.4)
holds with exponent νpc
> νSAW [38]. The universal shape characteristics of flexible polymers in
disordered environments modeled by a percolating lattice were studied recently in [39]. Another
interesting situation arises when the structural obstacles of environment display correlations on
a mesoscopic scale [40]. One can describe such a medium by a model of long-range-correlated
(extended) quenched defects. This model was proposed in reference [41] in the context of magnetic
phase transitions. It considers defects, characterized by a pair correlation function h(r), that decays
with a distance r according to a power law:
h(r) ∼ r−a (5.1)
at large r. This type of disorder has a direct interpretation for integer values of a; namely, the
case a = d corresponds to point-like defects, while a = d − 1 (a = d − 2) describes straight lines
(planes) of impurities of random orientation. Non-integer values of a are interpreted in terms of
impurities organized in fractal structures [42]. The effect of this type of disorder on the magnetic
phase transitions has been a subject to numerous studies [43].
The impact of long-range-correlated disorder on the scaling of single polymer chains was ana-
lyzed in our previous works [44] by means of field-theoretical renormalization group approach. In
particular, it was shown that the correlated obstacles in environment lead to a new universality
class with values of the polymer scaling exponents that depend on the strength of correlation ex-
pressed by parameters a. The question about how the characteristics of shape of a flexible chain
are effected by the presence of such a porous medium was briefly discussed by us in reference [45].
The details of these calculations will be presented here.
We introduce disorder into the model (4.4), by redefining µ2
0 → µ2
0+δµ0(x), where the local
33701-12
Shapes of macromolecules in good solvents: field theoretical renormalization group approach
fluctuations δµ0(x) obey:
〈〈δµ0(x)〉〉 = 0,
〈〈δµ0(x)δµ̂0(y)〉〉 = h(|x− y|). (5.2)
Here, 〈〈. . .〉〉 denotes the average over spatially homogeneous and isotropic quenched disorder. The
form of the pair correlation function h(r) is chosen to decay with distance according to (5.1).
In order to average the free energy over different configurations of the quenched disorder we
apply the replica method to construct an effective Lagrangean [44]:
Ldis =
1
2
n
∑
α=1
∫
ddx
[
(
µ2
0|~φα(x)|2+|∇~φα(x)|2
)
+
u0
4!
(
~φ2
α(x)
)2
]
+
n
∑
α,β=1
∫
ddxddyh(|x− y|)~φ2
α(x)
~φ2
β(y). (5.3)
Here, the term describing replicas coupling contains the correlation function h(r) (5.1), Greek
indices denote replicas and both the replica (n → 0) and polymer (m → 0) limits are implied. For
small k, the Fourier-transform h̃(k) of (5.1) reads:
h̃(k) ∼ v0+w0|k|a−d. (5.4)
Taking this into account, rewriting equation (5.3) in momentum space variables, and recalling
the special symmetry properties of (5.3) that appear for m, n → 0 [44], a theory with two bare
couplings u0 , w0 results. Note that for a > d the w0-term is irrelevant in the RG sense and one
restores the pure case (absence of structural disorder). As it will be shown below, this term modifies
the critical behaviour at a < d. We will refer to this type of disorder as long-range-correlated and
denote by LR hereafter.
To extract the scaling behavior of the model (5.3), one applies the field-theoretical renormaliza-
tion group method following the scheme described in a previous section, with modifications caused
by the presence of the second coupling constant w0 . In particular, the change of couplings u0 , w0
under renormalization defines a flow in parametric space, governed by corresponding β-functions
(c.f. equation (4.8)):
βu(u,w) =
∂u
∂ ln l
∣
∣
∣
0
, βw(u,w) =
∂w
∂ ln l
∣
∣
∣
0
. (5.5)
The fixed points (FPs) of the RG transformation are given by common zeroes of the β-functions.
The stable FP (u∗, w∗) that corresponds to the critical point of the system, is defined as the fixed
point where the stability matrix Bij = ∂βλi/∂λj , i, j = 1, 2 possesses eigenvalues with positive
real parts (here, λ1 = u, λ2 = w).
In our previous work [44] we have found the FP coordinates for polymers in LR disorder, which
up to the first order of ε = 4− d, δ = 4− a-expansion read:
u∗
RW = 0, w∗
RW = 0 stable for δ < 0, δ < 0, (5.6)
u∗
SAW =
3ε
4
, w∗
SAW = 0 stable for δ < ε/2, (5.7)
u∗
LR =
3δ2
2(ε− δ)
, w∗
LR =
3δ(ε− 2δ)
2(ε− δ)
stable for ε/2 < δ < ε. (5.8)
The RW and SAW fixed points restore the corresponding cases of a polymer in pure solvent
(cf. (4.9), (4.10)), whereas the LR fixed point reflects the effect of correlated obstacles, which
appears to be non-trivial in certain regions of the d, a plane and to govern new scaling behaviour
in this region. For critical exponents νLR, γLR governing the scaling of polymer chains in the region
of a, d, where the effect of LR disorder is nontrivial, one obtains [44]:
νLR = 1/2+δ/8, γLR = 1+δ/4. (5.9)
33701-13
V. Blavatska, C. von Ferber, Yu. Holovatch
As it was explained in the previous section, to estimate the universal size ratio (4.19) for the
case of polymers in long-range-correlated disorder, we calculate the Green function G(2,2)(u,w),
presented diagrammatically in figure 4. Now, every interactive diagram appears twice, once with
each of the two couplings u and w, respectively. For the renormalized function we obtain up to the
one-loop approximation:
G
(2,2)
R (0, 0; q,−q;u,w) =
2
q2+1
− 4
3
1
q2+1
[uI1(0, q)− wJ1(0, q)]
−2
3
[uI2(0, 0, q)− wJ2(0, 0, q)]+
4
3
1
q2+1
[uI1(0, 0)− wJ1(0, 0)] . (5.10)
The one-loop integrals Ii are given in appendix A. Note that Ji differs from corresponding Ii
only by an additional factor |p|a−d in the numerator. Differentiating over components of vector q,
evaluating at q = 0 and performing double ε, δ-expansions of the resulting expression, we have:
(
∇2
qG
(2,2)
R (0, 0; q,−q;u,w)
) ∣
∣
∣
q=0
= −4− 19
18
u− 19
18
w, (5.11)
(
∇2
kG
(2)
R (k,−k)
) ∣
∣
∣
k=0
= −2. (5.12)
Recalling the value of the LR fixed point (5.8), and inserting this into the ratio (4.19) of these
functions, one arrives at an expansion for the size ratio of a SAW in the presence of long-range
correlated disorder:
gLR = 6+
δ
8
. (5.13)
This should be compared with the corresponding value in the pure case (4.26). Let us qualitatively
estimate the change in the size ratio g, caused by the presence of structural obstacles in three
dimensions. Substituting directly ε = 1 into (4.26), we have for the polymer chain in a pure
solvent: gpure ≃ 6.06. Let us recall that the effect of long-range-correlated disorder is relevant to
a 6 d (δ > ε) (see e.g. explanation after equation (5.3)). Estimates of gLR can be evaluated by
direct substitution of the continuously variable parameter δ into equation (5.13). One concludes
that increasing the parameter δ (which corresponds to an increase of disorder strength) leads to a
corresponding increase of the g-ratio.
To compute the averaged asphericity in correspondence with (4.21), we need the Green function
G(2,4)(u,w) with four insertions ϕ2(q1)/2, ϕ
2(−q1)/2, ϕ
2(q2)/2, ϕ
2(−q2)/2, shown diagrammati-
cally in figure 5. The corresponding analytic expression for the renormalized function is given in
appendix B, equation (B2). Taking derivatives of this expression with respect to the components
of the inserted vectors q1, q2 we find:
Gxx = 576+
4028
15
(u− w),
Gxx|yy = 320+
436
3
(u− w),
Gxy|xy = 128+
308
5
(u− w). (5.14)
At the LR fixed point (5.8), from (4.21) we finally have:
ÂLR
d =
1
2
+
1
48
ε+
13
768
δ. (5.15)
Again, let us qualitatively estimate the change in Âd caused by the presence of structural obstacles
in three dimensions. Substituting directly ε = 1 into (4.29), we have for the pure case: Âpure
d ≃ 0.53.
Estimates of ÂLR
d can be obtained by direct substitution of the continuously changing parameter
δ into equation (5.15). An increasing strength of disorder correlations results in an increase of the
asphericity ratio of polymers in disorder. This phenomenon is intuitively understandable if one re-
calls the impact of the long-range-correlated disorder on the mean end-to-end distance exponent ν.
33701-14
Shapes of macromolecules in good solvents: field theoretical renormalization group approach
Indeed, it has been shown in [44] that such disorder leads to an increase of ν, and subsequently,
to the swelling of a polymer chain. Extended obstacles do not favour return trajectories and as a
result the polymer chain becomes more elongated. In turn, such elongation leads to an increase of
the asphericity ratio as predicted by equation (5.15).
6. Conclusions
The universal characteristics of the average shape of polymer coil configurations in a porous
(crowded) environment with structural obstacles have been analyzed considering the special case
when the defects are correlated at large distances r according to a power law: h(r) ∼ r−a. Applying
the field-theoretical RG approach, we estimate the size ratio g = 〈R2
e〉/〈R2
G〉 and averaged aspheric-
ity ratio Âd up to the first order of a double ε = 4− d, δ = 4− a expansion. We have revealed that
the presence of long-range-correlated disorder leads to an increase of both g and Âd as compared
to their values for a polymer chain in a pure solution. Moreover, the value of the asphericity ratio
Âd was found to be closer to the maximal value of one in presence of correlated obstacles. Thus,
we conclude that the presence of structural obstacles in an environment enforces the polymer coil
configurations to be less spherical. We believe that the obtained first order results indicate the
appropriate qualitative changes in polymer shape caused by long-range-correlated environment.
However, to get more accurate quantitative results, higher orders of perturbation theory may be
needed. This is subject of further investigations.
Acknowledgements
We thank Prof. Myroslav Holovko (Lviv) for an invitation to submit a paper to this Festschrift
and Prof. Yuri Kozitsky (Lublin) for useful discussions. This work was supported in part by the
FP7 EU IRSES project N269139 “Dynamics and Cooperative Phenomena in Complex Physical
and Biological Media” and Applied Research Fellowship of Coventry University.
Appendix A
Here, we present the expressions for the loop integrals, as they appear in the Green functions
G(2,2) and G(2,4). We make the couplings dimensionless by redefining u = uµd−4 and w = w µa−4;
therefore, the loop integrals do not explicitly contain the mass [31]:
I1(k1, k2) =
∫
d~p
[(p+k1)2+1] [(p+k2)2+1]
,
I2(k1, k2 , k3) =
∫
d~p
[(p+k1)2+1][(p+k2)2+1][(p+k3)2+1]
,
I3(k1, k2 , k3 , k4) =
∫
d~p
[(p+k1)2+1][(p+k2)2+1][(p+k3)2+1][(p+k4)2+1]
,
I4(k1, k2 , k3 , k4 , k5) =
∫
d~p
[(p+k1)2+1][(p+k2)2+1][(p+k3)2+1][(p+k4)2+1][(p+k5)2+1]
.
The loop integrals Ji (equations (5.10) and (B2)) differ from corresponding Ii only by an additional
factor |p|a−d in the numerators. The correspondence of the integrals to the diagrams in figure 5 is:
(e), (f) : integrals I1(0, q1), I1(0, q2), J1(0, q1), J1(0, q2),
(g) : I2(0, q1 , q2), I2(0, 0, q1), I2(0, 0, q2), J2(0, q1 , q2), J2(0, 0, q1), J2(0, 0, q2),
J2(0, q1 , q2), J2(0, 0, q1), J2(0, 0, q2),
(h) : I2(0, 0, q1), I2(0, 0, q2), I2(0, q1 , q1+q2), I2(0, q2 , q1+q2), J2(0, 0, q1),
J2(0, 0, q2), J2(0, q1 , q1+q2), J2(0, q2 , q1+q2),
33701-15
V. Blavatska, C. von Ferber, Yu. Holovatch
(i) : I3(0, 0, q1 , q2), I3(0, q1 , q2 , q1+q2), I3(0, q1 , q1 , q1+q2), I3(0, q2 , q2 , q1+q2),
J3(0, 0, q1 , q2), J3(0, q1 , q2 , q1+q2), J3(0, q1 , q1 , q1+q2), J3(0, q2 , q2 , q1+q2),
(j) : I4(0, 0, 0, q1 , q2), I4(0, 0, q1 , q2 , q1+q2), I4(0, 0, q1 , q1 , q1+q2), I4(0, 0, q2 , q2 , q1+q2),
J4(0, 0, 0, q1 , q2), J4(0, 0, q1 , q2 , q1+q2), J4(0, 0, q1 , q1 , q1+q2), J4(0, 0, q2 , q2 , q1+q2).
In our calculations, we use the following formula to fold many denominators into one (see e.g.
book of D. Amit in reference [5]):
1
aα1
1 . . . aαn
n
=
Γ(α1+ . . .+αn)
Γ(α1) . . .Γ(αn)
×
×
1
∫
0
dx1. . .
1
∫
0
dxn−1
xαn−1
1 . . . x
αn−1−1
n−1 (1−x1− . . .−xn−1)
αn−1
[x1a1+ . . .+xn−1an−1+(1−x1− . . .−xn−1)an]α1+...+αn
, (A1)
where the Feynmann variables xi extend over the domain x1 + . . .+ xn−1 6 1.
To compute the d-dimensional integrals we apply :
∫
dp
(p2+2~k~p+m2)α
=
1
2
Γ(d/2)Γ(α− d/2)
Γ(α)
(m2 − k2)d/2−α, (A2)
here dp = ddpΩd/(2π)
d, where the geometrical angular factor Ωd = 1/(2d−1πd/2Γ(d/2)) is sepa-
rated out and absorbed by redefining the coupling constant.
As an example we present the calculation of the integral:
I2(0, q1 , q2) =
∫
d~p
(p2+1)[(p+q1)2+1][(p+q2)2+1]
. (A3)
First, we make use of formula (A1) to rewrite:
1
(p2+1)[(p+q1)2+1][(p+q2)2+1]
=
Γ(3)
∫ 1
0
dx1
∫ 1
0
dx2
[p2+2~p(~q1x1+~q2x2)+1+x1q21+x2q22 ]
3
.
Now one can perform the integration over p, passing to the d-dimensional polar coordinates and
making use of the formula (A2):
∫
dp
[p2+2~p(~q1x1+~q2x2)+1+x1q21+x2q22 ]
3
=
Γ(d/2)Γ(3− d/2)
2Γ(3)
[1+x1q
2
1(1 − x1)+x2q
2
2(1 − x2)− 2x1x2q1q2]
d/2−3. (A4)
As a result, we are left with:
I2(0, q1 , q2) =
1
2
Γ
(
d
2
)
Γ
(
3− d
2
)
×
×
1
∫
0
dx1
1
∫
0
dx2[1+x1q
2
1(1− x1)+x2q
2
2(1 − x2)− 2x1x2q1q2]
d/2−3. (A5)
To find the contributions of this integral to Gxx|xx and Gxx|yy (according to (4.16)), we first
differentiate the integrand in (A5) over the components of vectors ~q1 , ~q2:
Ixx|xx ≡ d
dqx1
d
dqx1
d
dqx2
d
dqx2
[
1+x1q
2
1(1− x1)+x2q
2
2(1− x2)− 2x1x2q1q2
]d/2−3
∣
∣
∣
~q1=~q2=0
= 4
(
d
2
− 3
)2
[
2x2
1x
2
2+x2x1(1− x2)(1− x1)
]
− 4
(
d
2
− 3
)
[
x1x2(1− x1)(1− x2)+4x2
1x
2
2
]
,
Ixx|yy ≡ d
dqx1
d
dqx1
d
dqy2
d
dqy2
[
1+x1q
2
1(1− x1)+x2q
2
2(1− x2)− 2x1x2q1q2
]d/2−3 |~q1=~q2=0
=
(
d
2
− 3
)2
x2x1(1 − x2)(1 − x1)− 4
(
d
2
− 3
)
x2x1(1 − x1)(1 − x2).
33701-16
Shapes of macromolecules in good solvents: field theoretical renormalization group approach
Finally, the contributions of I2(0, q1 , q2) to Gxx|xx and Gxx|yy are found by performing integration
of Ixx|xx and Ixx|yy over x1 , x2 in (A5). Results can further be evaluated either fixing the value
of space dimension d or performing an expansion in parameter ε = 4− d. Working within the last
approach, we obtain up to the first order of the ε-expansion:
1
2
Γ
(
d
2
)
Γ
(
3− d
2
)
1
∫
0
dx1
1
∫
0
dx2 Ixx|xx ≃ 1
9
+
1
36
ε,
1
2
Γ
(
d
2
)
Γ
(
3− d
2
)
1
∫
0
dx1
1
∫
0
dx2 Ixx|yy ≃ 1+
1
4
ε. (A6)
Appendix B
In this appendix we give the expressions for renormalized Green functions G
(2,4)
R with four
insertions ϕ2(q1)/2, ϕ2(−q1)/2, ϕ2(q2)/2, ϕ2(−q2)/2 one needs for calculation of the averaged
asphericity ratios ÂSAW
d , ÂLR
d defined by (4.21). The Green function G
(2,4)
R (u) (see figure 5) reads:
G
(2,4)
R (u) =
8
(q21+1)(q22+1)
+
8
(q21+1)(q22+1)[(q1+q2)2+1]
+
4
(q21+1)2
+
4
(q22+1)2
−8
3
{
u[2I1(0, q1)+2I1(0, q2)]
(q21+1)(q22+1)[(q1+q2)2+1]
− u[2I1(0, q1)+2I1(0, q2)+2I2(0, q1, q2)]
(q21+1)(q22+1)
− 2uI1(0, q1)
(q21+1)2[(q1+q2)2+1]
− 2uI1(0, q2)
(q22+1)2[(q1+q2)2+1]
− 1
2
uI2(0, 0, q2)
(q21+1)2
− 1
2
uI2(0, 0, q1)
(q22+1)2
−u[I2(0, 0, q1)+I3(0, 0, q1, q2)+I3(0, q1, q2, q1+q2)+I3(0, q1, q1, q1+q2)]
(q22+1)
−u[I2(0, 0, q2)+I3(0, 0, q1, q2)+I3(0, q1, q2, q1+q2)+I3(0, q2, q2, q1+q2)]
(q21+1)
−u[I2(0, q1, q1+q2)+I2(0, q2, q1+q2)]
(q22+1)[(q1+q2)2+1]
− u[I2(0, q1, q1+q2)+I2(0, q2, q1+q2)]
(q21+1)[(q1+q2)2+1]
− u[2I4(0, 0, 0, q1, q2)+2I4(0, 0, q1, q2, q1+q2)+I4(0, 0, q1, q1, q1+q2)+I4(0, 0, q2, q2, q1+q2)]
2
}
+
4uI1(0, 0)
3
[
8
(q21+1)(q22+1)
+
8
(q21+1)(q22+1)[(q1+q2)2+1]
+
4
(q21+1)2
+
4
(q22+1)2
]
. (B1)
The Green function G
(2,4)
R (u,w) reads:
G
(2,4)
R (u,w) =
8
(q21+1)(q22+1)
+
8
(q21+1)(q22+1)[(q1+q2)2+1]
+
4
(q21+1)2
−8
3
{
u[2I1(0, q1)+2I1(0, q2)]
(q21+1)(q22+1)[(q1+q2)2+1]
− u[2I1(0, q1)+2I1(0, q2)+2I2(0, q1, q2)]
(q21+1)(q22+1)
− w[2J1(0, q1)+2J1(0, q2)]
(q21+1)(q22+1)[(q1+q2)2+1]
− w[2J1(0, q1)+2J1(0, q2)+2J2(0, q1, q2)]
(q21+1)(q22+1)
− 2uI1(0, q1)
(q21+1)2[(q1+q2)2+1]
− 2uI1(0, q2)
(q22+1)2[(q1+q2)2+1]
− 1
2
uI2(0, 0, q2)
(q21+1)2
− 1
2
uI2(0, 0, q1)
(q22+1)2
− 2wJ1(0, q1)
(q21+1)2[(q1+q2)2+1]
− 2wJ1(0, q2)
(q22+1)2[(q1+q2)2+1]
− 1
2
wJ2(0, 0, q2)
(q21+1)2
− 1
2
wJ2(0, 0, q1)
(q22+1)2
−u[I2(0, 0, q1)+I3(0, 0, q1, q2)+I3(0, q1, q2, q1+q2)+I3(0, q1, q1, q1+q2)]
(q22+1)
33701-17
V. Blavatska, C. von Ferber, Yu. Holovatch
−w[J2(0, 0, q1)+J3(0, 0, q1, q2)+J3(0, q1, q2, q1+q2)+J3(0, q1, q1, q1+q2)]
(q22+1)
−u[I2(0, 0, q2)+I3(0, 0, q1, q2)+I3(0, q1, q2, q1+q2)+I3(0, q2, q2, q1+q2)]
(q21+1)
−w[J2(0, 0, q2)+J3(0, 0, q1, q2)+J3(0, q1, q2, q1+q2)+J3(0, q2, q2, q1+q2)]
(q21+1)
−u[I2(0, q1, q1+q2)+I2(0, q2, q1+q2)]
(q22+1)[(q1+q2)2+1]
− u[I2(0, q1, q1+q2)+I2(0, q2, q1+q2)]
(q21+1)[(q1+q2)2+1]
−w[J2(0, q1, q1+q2)+J2(0, q2, q1+q2)]
(q22+1)[(q1+q2)2+1]
− w[J2(0, q1, q1+q2)+J2(0, q2, q1+q2)]
(q21+1)[(q1+q2)2+1]
−u[2I4(0, 0, 0, q1, q2)+2I4(0, 0, q1, q2, q1+q2)+I4(0, 0, q1, q1, q1+q2)+I4(0, 0, q2, q2, q1+q2)]
2
− w[2J4(0, 0, 0, q1, q2)+2J4(0, 0, q1, q2, q1+q2)+J4(0, 0, q1, q1, q1+q2)+J4(0, 0, q2, q2, q1+q2)]
2
}
+
4[uI1(0, 0)− wJ1(0, 0)]
3
[
8
(q21+1)(q22+1)
+
8
(q21+1)(q22+1)[(q1+q2)2+1]
+
4
(q21+1)2
+
4
(q22+1)2
]
.
(B2)
The one-loop integrals Ii and Ji are explained in appendix A.
References
1. The idea of polymeric substances being long chains of short repeated monomers first appeared in:
Staudinger H., Ber. Dtsch. Chem. Ges., 1920, 53, 1073; doi:10.1002/cber.19200530627. However more
then ten years passed before it became commonly recognized due to experimental evidence.
2. de Gennes P.G., Scaling Concepts in Polymer Physics. Cornell University Press, Ithaca, 1979.
3. Vanderzande C., Lattice Models of Polymers. Cambridge University Press, Cambridge, 1998;
doi:10.1017/CBO9780511563935.
4. Kuhn W., Kolloid Z., 1934, 68, 2; doi:10.1007/BF01451681.
5. Brézin E., Le Guillou J.C., Zinn-Justin J. Field theoretical approach to critical phenomena. – In:
Phase Transitions and Critical Phenomena. Vol. 6, eds. Domb C. and Green M.S., Academic Press,
London, 1976; Amit D.J., Field Theory, the Renormalization Group, and Critical Phenomena. World
Scientific, Singapore, 1989; Zinn-Justin J., Quantum Field Theory and Critical Phenomena. Oxford
University Press, Oxford, 1996; Kleinert H., Schulte-Frohlinde V., Critical Properties of φ4-Theories.
World Scientific, Singapore, 2001.
6. Kalyuzhnyi Yu.V., Cummings P.T., J. Chem. Phys., 1995, 103, 3265; doi:10.1063/1.470259;
Stell G., Lin C.-T., Kalyuzhnyi Yu.V., J. Chem. Phys., 1999, 110, 5458; doi:10.1063/1.478441;
Lin C.-T., Stell G., Kalyuzhnyi Yu.V., J. Chem. Phys., 2000, 112, 3071; doi:10.1063/1.480882.
7. Lin C.-T., Kalyuzhnyi Yu.V., Stell G., J. Chem. Phys., 1998, 108, 6513; doi:10.1063/1.476058;
Blum L., Kalyuzhnyi Yu.V., Bernard O., Herrera-Pacheco J.N., J. Phys.: Condens. Matter, 1996, 8,
A143; doi:10.1088/0953-8984/8/25A/010;
Kalyuzhnyi Yu.V., Stell G., Chem. Phys. Lett., 1995, 240, 157; doi:10.1016/0009-2614(95)00490-U.
8. Solc K., Stockmayer W.H., J. Chem. Phys., 1971, 54, 2756; doi:10.1063/1.1675241;
Solc K., J. Chem. Phys., 1971, 55, 335; doi:10.1063/1.1675527.
9. Rudnick J., Gaspari G., J. Phys. A: Math. Gen., 1986, 19, L191; doi:10.1088/0305-4470/19/4/004;
Gaspari G., Rudnick J., Beldjenna A., J. Phys. A: Math. Gen., 1987, 20, 3393;
doi:10.1088/0305-4470/20/11/041.
10. Aronovitz J.A., Nelson D.R., J. Phys., 1986, 47, 1445; doi:10.1051/jphys:019860047090144500.
11. Cannon J.W., Aronovitz J.A., Goldbart P., J. Phys. I, 1991, 1, 629; doi:10.1051/jp1:1991159.
12. Bishop M., Saltiel C.J., J. Chem. Phys., 1988, 88, 6594; doi:10.1063/1.454446.
13. Domb C., Hioe F.T., J. Chem. Phys., 1969, 51, 1915; doi:10.1063/1.1672277.
14. Jagodzinski O., Eisenriegler E., Kremer K., J. Phys. I, 1992, 2, 2243; doi:10.1051/jp1:1992279.
15. Witten T.A., Schäfer L., J. Phys. A: Math. Gen., 1978, 11, 1843; doi:10.1088/0305-4470/11/9/018;
des Cloizeaux J., J. Phys., 1981, 42, 635; doi:10.1051/jphys:01981004205063500.
33701-18
http://dx.doi.org/10.1002/cber.19200530627
http://dx.doi.org/10.1017/CBO9780511563935
http://dx.doi.org/10.1007/BF01451681
http://dx.doi.org/10.1063/1.470259
http://dx.doi.org/10.1063/1.478441
http://dx.doi.org/10.1063/1.480882
http://dx.doi.org/10.1063/1.476058
http://dx.doi.org/10.1088/0953-8984/8/25A/010
http://dx.doi.org/10.1016/0009-2614(95)00490-U
http://dx.doi.org/10.1063/1.1675241
http://dx.doi.org/10.1063/1.1675527
http://dx.doi.org/10.1088/0305-4470/19/4/004
http://dx.doi.org/10.1088/0305-4470/20/11/041
http://dx.doi.org/10.1051/jphys:019860047090144500
http://dx.doi.org/10.1051/jp1:1991159
http://dx.doi.org/10.1063/1.454446
http://dx.doi.org/10.1063/1.1672277
http://dx.doi.org/10.1051/jp1:1992279
http://dx.doi.org/10.1088/0305-4470/11/9/018
http://dx.doi.org/10.1051/jphys:01981004205063500
Shapes of macromolecules in good solvents: field theoretical renormalization group approach
16. Kranbuehl D.E., Verdier P.H., J. Chem. Phys., 1977, 67, 361; doi:10.1063/1.434532.
17. Behamou M., Mahoux G., J. Physique Lett., 1985, 46, L689; doi:10.1051/jphyslet:019850046015068900.
18. Honeycutt J.D., Thirumalai D., J. Chem. Phys., 1988, 90, 4542; doi:10.1063/1.456641.
19. Cardy J.L., Saleur H., J. Phys. A: Math. Gen., 1989, 22, L601; doi:10.1088/0305-4470/22/13/012.
20. Haber C., Ruiz S.A., Wirtz D., PNAS, 2000, 97, 10792; doi:10.1073/pnas.190320097.
21. Dima R.I., Thirumalai D., J. Phys. Chem. B, 2004, 108, 6564; doi:10.1021/jp037128y;
Hyeon C., Dima R.I., Thirumalai D., J. Chem. Phys., 2006, 125, 194905; doi:10.1063/1.2364190.
22. Rawat N., Biswas P., J. Chem. Phys., 2009, 131, 165104; doi:10.1063/1.3251769.
23. Plaxco K.W., Simons K.T., Baker D., J. Mol. Biol., 1998, 277, 985; doi:10.1006/jmbi.1998.1645;
Quyang Z., Liang J., Protein Sci., 2008, 17, 1256; doi:10.1110/ps.034660.108.
24. Neurath H., Cooper G.R., Erickson J.O., J. Biol. Chem., 1941, 138, 411; Kirkwood J.G., J. Polym.
Sci., Part A: Polym. Chem., 1954, 12, 1; doi:10.1002/pol.1954.120120102; de la Torre G., Llorca O.,
Carrascosa J.L., Valpuesta J.M., Eur. Biophys. J., 2001, 30, 457; doi:10.1007/s002490100176.
25. Erickson H.P., Biol. Proc. Online, 2009, 11, 32; doi:10.1007/s12575-009-9008-x.
26. Brief but comprehensible account of Bayesian theory is given in Sornette D., Critical Phenomena in
Natural Sciences. Chaos, Fractals, Selforganization and Disorder: Concepts and Tools. Springer, Berlin
Heidelberg, 2006.
27. Edwards S.F., Proc. Phys. Soc. London, 1965, 85, 613; doi:10.1088/0370-1328/85/4/301;
Edwards S.F., Proc. Phys. Soc. London, 1966, 88, 265; doi:10.1088/0370-1328/88/2/301.
28. des Cloizeaux J., Jannink G., Polymers in Solution. Clarendon Press, Oxford, 1990.
29. Schäfer L., Kapeller C., J. Phys., 1985, 46, 1853; doi:10.1051/jphys:0198500460110185300;
Colloid. Polym. Sci., 1990, 268, 995; doi:10.1007/BF01410588;
Schäfer L., Lehr U., Kapeller C., J. Phys. I, 1991, 1, 211; doi:10.1051/jp1:1991125.
30. See e.g. Albeverio S., Kondratiev Yu., Kozitsky Yu., Röckner M., The Statistical Mechanics of Quantum
Lattice Systems. A Path Integral Approach. European Math. Soc. Publishing House, Zürich, 2009.
31. We denote by ki , pi , qi d-dimensional vectors.
32. Dullen A.L., Porous Media: Fluid Transport and Pore Structure. Academic, New York, 1979.
33. Pusey P.N., van Megen W., Nature, 1986, 320, 340; doi:10.1038/320340a0.
34. Cannell D.S., Rondelez F., Macromolecules, 1980, 13, 1599; doi:10.1021/ma60078a046.
35. Record M.T., Courtenay E.S., Cayley S., Guttman H.J., Trends Biochem. Sci., 1998, 23, 190;
doi:10.1016/S0968-0004(98)01207-9; Minton A.P., J. Biol. Chem., 2001, 276, 10577;
doi:10.1074/jbc.R100005200; Ellis R.J., Minton A.P., Nature, 2003, 425, 27; doi:10.1038/425027a.
36. Horwich A., Nature, 2004, 431, 520; doi:10.1038/431520a; Winzor D.J., Wills P.R., Biophys. Chem.,
2006, 119, 186; doi:10.1016/j.bpc.2005.08.001; Zhou H.-X., Rivas G., Minton A.P., Annu. Rev. Bio-
phys., 2008, 37, 375; doi:10.1146/annurev.biophys.37.032807.125817; Kumar S., Jensen I., Jacob-
sen J.L., Guttmann A.J., Phys. Rev. Lett., 2007, 98, 128101; doi:10.1103/PhysRevLett.98.128101;
Singh A.R., Giri D., Kumar S., Phys. Rev. E, 2009, 75, 051801; doi:10.1103/PhysRevE.79.051801;
Echeverria C., Kapral R., J. Chem. Phys., 2010, 132, 104902; doi:10.1063/1.3319672.
37. Samiotakis A., Wittung-Stafshede P., Cheung M.S., Int. J. Mol. Sci., 2009, 10, 572;
doi:10.3390/ijms10020572.
38. Woo K.Y., Lee S.B., Phys. Rev. A, 1991, 44, 999; doi:10.1103/PhysRevA.44.999; Lee S.B., J. Ko-
rean Phys. Soc., 1996, 29, 1; doi:10.3938/jkps.29.1; Nakanishi H., Lee S.B., J. Phys. A: Math.
Gen., 1991, 24, 1355; doi:10.1088/0305-4470/24/6/026; Lee S.B., Nakanishi H., Phys. Rev. Lett.,
1988, 61, 2022; doi:10.1103/PhysRevLett.61.2022; Grassberger P., J. Phys. A: Math. Gen., 1993,
26, 1023; doi:10.1088/0305-4470/26/5/022; Rintoul M.D., Moon J., Nakanishi H., Phys. Rev. E,
1994, 49, 2790; doi:10.1103/PhysRevE.49.2790; Ordemann A., Porto M., Roman H.E., Phys. Rev. E,
2002, 65, 021107; doi:10.1103/PhysRevE.65.021107; J. Phys. A: Math. Gen., 2002, 35, 8029;
doi:10.1088/0305-4470/35/38/306; von Ferber C., Blavats’ka V., Folk R., Holovatch Yu., Phys.
Rev. E, 2004, 70, 035104(R); doi:10.1103/PhysRevE.70.035104; Janssen H.-K., Stenull O., Phys.
Rev. E, 2007, 75, 020801(R); doi:10.1103/PhysRevE.75.020801; Blavatska V., Janke W., Euro-
phys. Lett., 2008, 82, 66006; doi:10.1209/0295-5075/82/66006; Phys. Rev. Lett., 2008, 101, 125701;
doi:10.1103/PhysRevLett.101.125701; J. Phys. A: Math. Gen., 2009, 42, 015001;
doi:10.1088/1751-8113/42/1/015001.
39. Blavatska V., Janke W., J. Chem. Phys., 2010, 133, 184903; doi:10.1063/1.3501368.
40. Sahimi M., Flow and Transport in Porous Media and Fractured Rock. VCH, Weinheim, 1995.
41. Weinrib A., Halperin B.I., Phys. Rev. B, 1983, 27, 413; doi:10.1103/PhysRevB.27.413.
42. Note an ambiguity in relating fractal dimension to the non-integer dimension that arises in the theory
of critical phenomena. See, e.g.,
33701-19
http://dx.doi.org/10.1063/1.434532
http://dx.doi.org/10.1051/jphyslet:019850046015068900
http://dx.doi.org/10.1063/1.456641
http://dx.doi.org/10.1088/0305-4470/22/13/012
http://dx.doi.org/10.1073/pnas.190320097
http://dx.doi.org/10.1021/jp037128y
http://dx.doi.org/10.1063/1.2364190
http://dx.doi.org/10.1063/1.3251769
http://dx.doi.org/10.1006/jmbi.1998.1645
http://dx.doi.org/10.1110/ps.034660.108
http://dx.doi.org/10.1002/pol.1954.120120102
http://dx.doi.org/10.1007/s002490100176
http://dx.doi.org/10.1007/s12575-009-9008-x
http://dx.doi.org/10.1088/0370-1328/85/4/301
http://dx.doi.org/10.1088/0370-1328/88/2/301
http://dx.doi.org/10.1051/jphys:0198500460110185300
http://dx.doi.org/10.1007/BF01410588
http://dx.doi.org/10.1051/jp1:1991125
http://dx.doi.org/10.1038/320340a0
http://dx.doi.org/10.1021/ma60078a046
http://dx.doi.org/10.1016/S0968-0004(98)01207-9
http://dx.doi.org/10.1074/jbc.R100005200
http://dx.doi.org/10.1038/425027a
http://dx.doi.org/10.1038/431520a
http://dx.doi.org/10.1016/j.bpc.2005.08.001
http://dx.doi.org/10.1146/annurev.biophys.37.032807.125817
http://dx.doi.org/10.1103/PhysRevLett.98.128101
http://dx.doi.org/10.1103/PhysRevE.79.051801
http://dx.doi.org/10.1063/1.3319672
http://dx.doi.org/10.3390/ijms10020572
http://dx.doi.org/10.1103/PhysRevA.44.999
http://dx.doi.org/10.3938/jkps.29.1
http://dx.doi.org/10.1088/0305-4470/24/6/026
http://dx.doi.org/10.1103/PhysRevLett.61.2022
http://dx.doi.org/10.1088/0305-4470/26/5/022
http://dx.doi.org/10.1103/PhysRevE.49.2790
http://dx.doi.org/10.1103/PhysRevE.65.021107
http://dx.doi.org/10.1088/0305-4470/35/38/306
http://dx.doi.org/10.1103/PhysRevE.70.035104
http://dx.doi.org/10.1103/PhysRevE.75.020801
http://dx.doi.org/10.1209/0295-5075/82/66006
http://dx.doi.org/10.1103/PhysRevLett.101.125701
http://dx.doi.org/10.1088/1751-8113/42/1/015001
http://dx.doi.org/10.1063/1.3501368
http://dx.doi.org/10.1103/PhysRevB.27.413
V. Blavatska, C. von Ferber, Yu. Holovatch
Wu Y.K., Hu B., Phys. Rev. A, 1987, 35, 1404; doi:10.1103/PhysRevA.35.1404;
Holovatch Yu., Shpot M., J. Stat. Phys., 1992, 66, 867; doi:10.1007/BF01055706;
Holovatch Yu., Yavors’kii T., ibid., 1998, 92, 785; doi:10.1023/A:1023032307964.
43. Korutcheva E., de la Rubia F.J., Phys. Rev. B, 1998, 58, 5153; doi:10.1103/PhysRevB.58.5153;
Prudnikov V.V., Prudnikov P.V., Fedorenko A.A., J. Phys. A: Math. Gen., 1999, 32, L399;
doi:10.1088/0305-4470/32/36/102; Prudnikov V.V., Prudnikov P.V., Fedorenko A.A., J. Phys. A:
Math. Gen., 1999, 32, 8587; doi:10.1088/0305-4470/32/49/302; Ballesteros H.G., Parisi G., Phys.
Rev. B, 1999, 60, 12912; doi:10.1103/PhysRevB.60.12912; Prudnikov V.V., Prudnikov P.V., Fe-
dorenko A.A., Phys. Rev. B, 2000, 62, 8777; doi:10.1103/PhysRevB.62.8777; Holovatch Yu.,
Blavats’ka V., Dudka M., von Ferber C., Folk R., Yavors’kii T., Int. J. Mod. Phys. B, 2002, 16, 4027;
doi:10.1142/S0217979202014760; Vasquez C., Paredes R., Hasmy A., Jullien R., Phys. Rev. Lett.,
2003, 90, 170602; doi:10.1103/PhysRevLett.90.170602; Blavats’ka V., von Ferber C., Holovatch Yu.,
Phys. Rev. B, 2003, 67, 094404; doi:10.1103/PhysRevB.67.094404; Blavats’ka V., Dudka M., Folk R.,
Holovatch Yu., Phys. Rev. B, 2005, 72, 064417; doi:10.1103/PhysRevB.72.064417.
44. Blavats’ka V., von Ferber C., Holovatch Yu., J. Mol. Liq., 2001, 91, 77;
doi:10.1016/S0167-7322(01)00179-9; Blavats’ka V., von Ferber C., Holovatch Yu., Phys. Rev. E, 2001,
64, 041102; doi:10.1103/PhysRevE.64.041102; Blavats’ka V., von Ferber C., Holovatch Yu., J. Phys.:
Condens. Matter, 2002, 14, 9465; doi:10.1088/0953-8984/14/41/302.
45. Blavats’ka V., von Ferber C., Holovatch Yu., Phys. Lett. A, 2010, 374 2861;
doi:10.1016/j.physleta.2010.03.037.
Форми макромолекул у хороших розчинниках:
пiдхiд теоретико-польової ренормалiзацiйної групи
В. Блавацька1, К. фон Фербер2,3, Ю. Головач1
1 Iнститут фiзики конденсованих систем НАН України, вул. I. Свєнцiцького, 1, 79011 Львiв, Україна
2 Дослiдницький центр прикладної математики, Унiверситет Ковентрi, CV1 5FB Ковентрi, Англiя
3 Теоретична фiзика полiмерiв, Унiверситет Фрайбургу, D-79104 Фрайбург, Нiмеччина
У статтi ми показуємо, яким чином можна застосувати метод теоретико-польової ренормалiзацiйної
групи для аналiзу унiверсальних властивостей форм довгих гнучких полiмерних ланцюгiв у пористо-
му середовищi. До цього часу такi аналiтичнi розрахунки в основному торкались показникiв скей-
лiнгу, що визначають конформацiйнi властивостi полiмерних макромолекул. Проте, iснують й iншi
спостережуванi величини, що, як i показники скейлiнгу, є унiверсальними (тобто незалежними вiд
хiмiчної структури як макромолекул, так i розчинника), а отже можуть бути проаналiзованi в межах
пiдходу ренормалiзацiйної групи. Ми цiкавимось питанням, якої форми набуває довга гнучка полi-
мерна макромолекула у розчинi в присутностi пористого середовища. Це питання є суттєвим для
розумiння поведiнки макромолекул у колоїдних розчинах, поблизу мiкропористих мембран, а також
у клiтинному середовищi. Ми розглядаємо запропоновану ранiше модель полiмера у d-вимiрному
просторi [V. Blavats’ka, C. von Ferber, Yu. Holovatch, Phys. Rev. E, 2001, 64, 041102] у середовищi iз стру-
ктурними неоднорiдностями, що характеризуються парною кореляцiйною функцiєю h(r), яка спадає
iз вiдстанню r згiдно степеневого закону: h(r) ∼ r−a. Застосовуємо пiдхiд теоретико-польової ре-
нормалiзацiйної групи i оцiнюємо вiдношення розмiрiв 〈R2
e 〉/〈R
2
G〉 та асферичнiсть Âd до першого
порядку ε = 4−d, δ = 4−a-розкладу.
Ключовi слова: полiмер, заморожений безлад, ренормалiзацiйна група
33701-20
http://dx.doi.org/10.1103/PhysRevA.35.1404
http://dx.doi.org/10.1007/BF01055706
http://dx.doi.org/10.1023/A:1023032307964
http://dx.doi.org/10.1103/PhysRevB.58.5153
http://dx.doi.org/10.1088/0305-4470/32/36/102
http://dx.doi.org/10.1088/0305-4470/32/49/302
http://dx.doi.org/10.1103/PhysRevB.60.12912
http://dx.doi.org/10.1103/PhysRevB.62.8777
http://dx.doi.org/10.1142/S0217979202014760
http://dx.doi.org/10.1103/PhysRevLett.90.170602
http://dx.doi.org/10.1103/PhysRevB.67.094404
http://dx.doi.org/10.1103/PhysRevB.72.064417
http://dx.doi.org/10.1016/S0167-7322(01)00179-9
http://dx.doi.org/10.1103/PhysRevE.64.041102
http://dx.doi.org/10.1088/0953-8984/14/41/302
http://dx.doi.org/10.1016/j.physleta.2010.03.037
Introduction
Shape of a flexible polymer: Kuhn's intuitive approach
Description of polymer shape in terms of gyration tensor and combinations of its components
Field-theoretical renormalization group approach to define polymer shape
Polymer in porous environment: Model with long-range correlated disorder
Conclusions
|