Gauge theory of pairing and spin fluctuations near the quantum critical point and superhigh-temperature superconductivity

We develop a new theory of pairing and magnetic effect near the quantum critical point. Several novel properties are predicted: based on a spin fermion model, we derive two new interactions, i) a spin deformational potential Hsdp proportional to the bandwidth W (as opposed to the considerably sma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Физика низких температур
Datum:2006
1. Verfasser: Schrieffer, J.R.
Format: Artikel
Sprache:English
Veröffentlicht: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2006
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/120189
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Gauge theory of pairing and spin fluctuations near the quantum critical point and superhigh-temperature superconductivity / J.R. Schrieffer // Физика низких температур. — 2006. — Т. 32, № 4-5. — С. 479–482. — Бібліогр.: 9 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:We develop a new theory of pairing and magnetic effect near the quantum critical point. Several novel properties are predicted: based on a spin fermion model, we derive two new interactions, i) a spin deformational potential Hsdp proportional to the bandwidth W (as opposed to the considerably smaller exchange coupling J of the nearly antiferromagnetic Fermi liquid theory) and ii) a diamagnetic potential Hdia, quadratic in a gauge potential A. A dramatic increase of Tc is predicted for 0.01 W ≤ J ≤ 10W. This should have immense technological impact in electric energy production, storage and transmission, as well as for medical electronics, microwave electronics, computer memory and information storage, separations technology and maglev, amongst others. The striking prediction to be confirmed by experiment is that the pairing order parameter ∆(k) is predicted to be p-wave, i.e., l = 1, S = 1, as compared to l = 2 and S = 1 for conventional HTS materials. In addition a novel collective model is predicted whose frequency, ωL is in the optical range and is determined by Hsdp.
ISSN:0132-6414