Biochemical passivation of metal surfaces for sensor application: reactive annealing of polycrystalline gold films in hydrogen sulfide atmosphere
The formation of AuxSy interfacial layer by reactive annealing of gold films in H₂S atmosphere is investigated. This seems to be a technologically favorable technique for the large-scale and low-cost fabrication of nondestructive immobilization support for biological molecules. Formation of phases w...
Gespeichert in:
| Veröffentlicht in: | Semiconductor Physics Quantum Electronics & Optoelectronics |
|---|---|
| Datum: | 2000 |
| Hauptverfasser: | , , , , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України
2000
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/120238 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Biochemical passivation of metal surfaces for sensor application: reactive annealing of polycrystalline gold films in hydrogen sulfide atmosphere / B.A. Snopok, K.V. Kostyukevych, G.V. Beketov, S.A. Zinio, Yu.M. Shirshov, E.F. Venger // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2000. — Т. 3, № 1. — С. 59-68. — Бібліогр.: 50 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | The formation of AuxSy interfacial layer by reactive annealing of gold films in H₂S atmosphere is investigated. This seems to be a technologically favorable technique for the large-scale and low-cost fabrication of nondestructive immobilization support for biological molecules. Formation of phases with different chemical functionality and surface topography as a function of reaction time was studied using Atomic Force Microscopy (AFM), Surface Plasmon Resonance (SPR) measurements and biomolecular interaction analysis (trypsin - Soybean Trypsin Inhibitor (STI) reaction). The results obtained confirm the classical two-step model for the sulfide phase formation during reactive annealing. This includes an intermediate formation of a dispersed phase of sulfur followed by its reconstruction to a close-packed sulfide layer. Adsorption of proteins onto a certain sulfide layer passes with retention of a native state of adsorbed molecules. The proposed strategy for formation of biochemical structures (gold/sulfide/proteins) on the surface of physical transducers opens a new way for design and development of novel artificial smart sensing systems. They not only maintain optimal functioning of bioreceptors but also are responsive to their environment.
|
|---|---|
| ISSN: | 1560-8034 |