The order parameter in binary mixtures

Phase transitions in a binary mixture are investigated by means of the collective variables method with a reference system. It is shown that the system is described with two sets of collective variables: η~k and ξ~k. The CV connected with the order parameter is η~k₌₀ in the case of the...

Full description

Saved in:
Bibliographic Details
Date:1999
Main Author: Patsahan, O.V.
Language:English
Published: Інститут фізики конденсованих систем НАН України 1999
Series:Condensed Matter Physics
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/120263
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:The order parameter in binary mixtures / O.V. Patsahan // Condensed Matter Physics. — 1999. — Т. 2, № 2(18). — С. 235-241. — Бібліогр.: 10 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-120263
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1202632025-02-09T20:57:40Z The order parameter in binary mixtures Параметр порядку у бінарних сумішах Patsahan, O.V. Phase transitions in a binary mixture are investigated by means of the collective variables method with a reference system. It is shown that the system is described with two sets of collective variables: η~k and ξ~k. The CV connected with the order parameter is η~k₌₀ in the case of the gas-liquid critical point as well as in the case of the mixing-demixing phase transition. The particular form of η0 for each of these phenomena can be determined by means of the relations between the microscopic parameters,temperature, density and concentration of the system under consideration. Фазові переходи у бінарній суміші досліджуються з допомогою методу колективних змінних з виділеною системою відліку. Показано, що система описується двома наборами колективних змінних: η~k і ξ~k . Колективною змінною,зв’язаною з параметром порядку є змінна η~k₌₀ як у випадку критичної точки газ-рідина, так і у випадку фазового переходу змішування-незмішування. Конкретна форма η0 для кожного з цих явищ визначається співвідношенням між температурою, густиною, концентрацією і мікроскопічними параметрами системи, яка розглядається. 1999 The order parameter in binary mixtures / O.V. Patsahan // Condensed Matter Physics. — 1999. — Т. 2, № 2(18). — С. 235-241. — Бібліогр.: 10 назв. — англ. 1607-324X DOI:10.5488/CMP.2.2.235 PACS: 05.70.Fh, 05.70.Jk, 64.10.+h https://nasplib.isofts.kiev.ua/handle/123456789/120263 en Condensed Matter Physics application/pdf Інститут фізики конденсованих систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Phase transitions in a binary mixture are investigated by means of the collective variables method with a reference system. It is shown that the system is described with two sets of collective variables: η~k and ξ~k. The CV connected with the order parameter is η~k₌₀ in the case of the gas-liquid critical point as well as in the case of the mixing-demixing phase transition. The particular form of η0 for each of these phenomena can be determined by means of the relations between the microscopic parameters,temperature, density and concentration of the system under consideration.
author Patsahan, O.V.
spellingShingle Patsahan, O.V.
The order parameter in binary mixtures
Condensed Matter Physics
author_facet Patsahan, O.V.
author_sort Patsahan, O.V.
title The order parameter in binary mixtures
title_short The order parameter in binary mixtures
title_full The order parameter in binary mixtures
title_fullStr The order parameter in binary mixtures
title_full_unstemmed The order parameter in binary mixtures
title_sort order parameter in binary mixtures
publisher Інститут фізики конденсованих систем НАН України
publishDate 1999
url https://nasplib.isofts.kiev.ua/handle/123456789/120263
citation_txt The order parameter in binary mixtures / O.V. Patsahan // Condensed Matter Physics. — 1999. — Т. 2, № 2(18). — С. 235-241. — Бібліогр.: 10 назв. — англ.
series Condensed Matter Physics
work_keys_str_mv AT patsahanov theorderparameterinbinarymixtures
AT patsahanov parametrporâdkuubínarnihsumíšah
AT patsahanov orderparameterinbinarymixtures
first_indexed 2025-11-30T16:57:05Z
last_indexed 2025-11-30T16:57:05Z
_version_ 1850235237685002240
fulltext Condensed Matter Physics, 1999, Vol. 2, No 2(18), pp. 235–241 The order parameter in binary mixtures O.V.Patsahan Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii Str., 290011 Lviv, Ukraine Received August 31, 1998, in final form November 30, 1998 Phase transitions in a binary mixture are investigated by means of the collective variables method with a reference system. It is shown that the system is described with two sets of collective variables: η~k and ξ~k. The CV connected with the order parameter is η~k=0 in the case of the gas-liquid critical point as well as in the case of the mixing-demixing phase transition. The particular form of η0 for each of these phenomena can be determined by means of the relations between the microscopic parameters,temperature, density and concentration of the system under consideration. Key words: binary mixture, collective variables, phase transition, order parameter PACS: 05.70.Fh, 05.70.Jk, 64.10.+h 1. Introduction The choice of the order parameter in multicomponent fluid mixtures is a serious problem because the character of the phase transition can change continuously from the pure gas-liquid transition to a mixing-demixing one. The question of the physical nature of the order parameter in binary fluid mixtures has been considered until recently from the point of view of both the phenomenological theory [1,2] and the microscopic approach [3]-[6]. Nowadays the commonly accepted idea is that both the gas-liquid and mixing-demixing phase transitions are accompanied by total density fluctuations as well as by relative density fluctuations. The only symmetrical mixture exhibits a complete distinction between these two processes [6]. However, such an “ideal” system is not likely to occur in reality. In real mixtures the contribution from each type of the fluctuation processes changes along the critical curve. The evaluation of such contributions at each critical curve point is essential to the definition of the order parameter and to the understanding of the phase transition character in the mixture. In our approach the question of the physical nature of the order parameter seems to have a consistent and clear solution. c© O.V.Patsahan 235 O.V.Patsahan In this paper we propose a microscopic approach to the study of phase transitions in multicomponent fluids. It is based on the method of collective variables (CV) with a distinguished reference system (RS) [7,8]. The point is that the statistical description of the phase transition is to be performed in the appropriate phase space specific to a certain physical model. Among the independent variables of this space there should be those connected with order parameters. This phase space forms a set of CV . Each of them is a mode of density fluctuations corresponding to the specific feature of the model under consideration. In particular, for a magnetic system the CV are variables connected with spin density fluctuation modes, for a one-component fluid – with particle density fluctuation modes. What is the content of the CV for a multicomponent system? We will answer this question below. 2. Functional representation of the grand partition function of a binary mixture Let us consider a classical two-component system of interacting particles con- sisting of Na particles of species a and Nb particles of species b. The volume of the system is V , the system temperature is T . Let us assume that the interaction in the system has a pairwise additive charac- ter. The interaction potential between a γ particle at ~ri and a δ particle at ~rj may be expressed as a sum of two terms: Uγδ(rij) = ψγδ(rij) + φγδ(rij), where ψγδ(r) is a potential of a short-range repulsion that will be chosen as an interaction between two hard spheres σγγ and σδδ. φγδ(r) is an attractive part of the potential which dominates at large distances. An arbitrary positive function belonging to the L2 class can be chosen as the potential φγδ(r). Further consideration of the problem is done in the extended phase space: in the phase space of the Cartesian coordinates of the particles and in the CV phase space. An interaction connected with repulsion (potential ψγδ(r)) is considered in the space of the Cartesian coordinates of the particles. We call this two-component hard spheres system a reference system (RS). The interaction connected with an attraction (potential φγδ(r)) is considered in the CV space. The phase space overflow is cancelled by introducing the transition Jacobian. The contribution of the short- range forces to the long-range interaction screening is ensured by averaging this Jacobian over the RS. Then a grand partition function in the CV representation with a RS can be written as Ξ = Ξ0Ξ1, where Ξ0 is the grand partition function of the RS. The thermodynamic and struc- tural properties of the RS are assumed to be known. We assume that in the region of temperatures, concentrations and densities we are interested in, the thermodynamic 236 The order parameter in binary mixtures functions of the RS remain analytic. Ξ1 has the following form: Ξ1 = ∫ (dρ) (dc) exp [ βµ+ 1 ρ0 + βµ− 1 c0 − β 2V ∑ ~k [Ṽ (k)ρ~kρ−~k + W̃ (k)c~kc−~k + Ũ(k)ρ~kc−~k ] ] J(ρ, c). (2.1) Here the following notations are introduced: ρ~k and c~k are the CV connected with total density fluctuation modes and relative density (or concentration) fluctuation modes in the binary system. Functions µ+ 1 and µ− 1 have the form: µ+ 1 = √ 2 2 (µa 1 + µb 1), µ− 1 = √ 2 2 (µa 1 − µb 1) (2.2) and are determined from the equations ∂ ln Ξ1 ∂βµ+ 1 = 〈N〉, (2.3) ∂ ln Ξ1 ∂βµ− 1 = 〈Na〉 − 〈Nb〉; (2.4) Ṽ (k) = ( φ̃aa(k) + φ̃bb(k) + 2φ̃ab(k) ) /2, W̃ (k) = ( φ̃aa(k) + φ̃bb(k)− 2φ̃ab(k) ) /2, Ũ(k) = ( φ̃aa(k)− φ̃bb(k) ) /2, (2.5) J(ρ, c) = ∫ (dω) (dγ) exp [ i2π ∑ veck (ωkρk + γkck) ] J(ω, γ), (2.6) J(ω, γ) = exp [ ∑ n>1 ∑ in>0 (−i2π)n n! ∑ ~k1...~kn M (in) n (0, . . . , 0) × γ~k1 . . . γ~kinω~kin+1 . . . ω~kn ] . (2.7) Index in is used to indicate the number of variables γ~k in the cumulant expansion (2.6). CumulantsM (in) n are expressed as linear combination of the partial cumulants Mγ1...γn and are presented for γ1, . . . , γn = a, b and n 6 4 in [6] (see Appendix B in [6]). Formulas (2.1)–(2.7) are the initial formulas in our study of phase transitions in binary fluids. 237 O.V.Patsahan 3. The order parameter in a binary mixture Let us consider the functional integral in Gaussian approximation (2.1)–(2.7). This approximation, also known as the random-phase approximation, yields the correct qualitative picture of the phenomena under consideration. After integration over variables γk and ωk, Ξ1 can be rewritten as ΞG 1 = 1 2π ∏ ~k ′ 1 π 1 √ ∆(k) ∫ (dρ) (dc) exp [ ρ0(βµ + 1 + ℵ1/∆) + c0(βµ − 1 + ℵ2/∆)− (M (0) 1 ℵ1 +M (1) 1 ℵ2) − 1 2 ∑ ~k [ρ~kρ−~k A11(k) + c~kc−~k A22(k) + 2ρ~kc−~k A12(k)] ] , (3.1) where ℵ1 =M (2) 2 M (0) 1 −M (1) 2 M (1) 1 , ℵ2 =M (0) 2 M (0) 1 −M (1) 2 M (0) 1 , A11(k) = −1 2 ( β V Ṽ (k) + M (2) 2 ∆ ) , A22(k) = −1 2 ( β V W̃ (k) + M (0) 2 ∆ ) , A12(k) = −1 2 ( β V Ũ(k)− M (1) 2 ∆ ) , (3.2) ∆ =M (0) 2 M (2) 2 − (M (1) 2 )2. In order to determine the phase space of the CV connected with the order parameters we introduce independent collective excitations by diagonalizing the square form in (3.1) by means of the orthogonal transformation: ρ~k = A(k)η~k +B(k)ξ~k , c~k = C(k)η~k +D(k)ξ~k . (3.3) The explicit forms for coefficients A(k), B(k), C(k) and D(k) are given in Ap- pendix A. As a result, we have ΞG 1 = 1 2π ∏ ~k ′ 1 π 1 √ ∆(k) ∫ (dη) (dξ) exp [ η0(AM1 + CM2) + ξ0(BM1 +DM2) − (M (0) 1 ℵ1 +M (1) 1 ℵ2)/∆(0)− 1 2 ∑ ~k (ε11(k)η~kη−~k + ε22(k)ξ~kξ−~k ) ] , (3.4) where εii(k) = −(A11(k) + A22(k)∓ √ (A11(k)−A22(k))2 + 4A2 12(k)). (3.5) 238 The order parameter in binary mixtures One of the quantities (3.5) (or both) tends to zero as the critical temperature is approached at a certain wave vector ~k∗. Thus the CV η~k∗ (or ξ~k∗) can be iden- tified as the order parameter, where the wave vector ~k∗ should correspond to the minimum of one of the functions ε11(k) or ε22(k) (or both). These functions depend on temperature, the attractive potentials φ̃γδ(k) and the characteristics of the RS. The RS enters into (3.5) via the cumulants Mγδ(k). Mγδ(k) can be expressed by the Fourier transforms of the direct correlation functions Cγδ(k) using the Ornstein- Zernike equations for a mixture. Figure 1. Density-concentration projection of the mean field critical line of the model binary mixture at α = 1.0, q = 0.9 and r = 0.6 (α = σaa/σbb, q = −φ̃bb(0)/|φ̃aa(0)|, r = −φ̃bb(0)/|φ̃ab(0)|). Coefficients ε11(k) and ε22(k) are studied both as wave vector functions at dif- ferent values of temperature T , density and concentration including the gas-liquid and mixing-demixing critical points [9] and as temperature functions at ~k = 0 [10]. The results show that branch ε11(k) is the first to reach zero no matter whether the system approaches the gas-liquid or gas-gas demixing critical point. Moreover, ε11(k) and ε22(k) have the minima at ~k = 0 [9]. Hence we can draw the following conclusions: 1. Branch ε11(k) is always critical. 2. Because ε11(k) has the minimum at ~k = 0, the CV connected with the order parameter is η0 in the case of the gas-liquid critical point as well as in the case of the mixing-demixing phase transition. The particular form of η 0 for each 239 O.V.Patsahan of these phenomena can be determined by means of the relations between the microscopic parameters, temperature, density and concentration of the system, e.g. by means of coefficients A(0), B(0), C(0) and D(0). Thus, the proposed approach enables us, on microscopic grounds, to define the order parameter at each point along a critical curve and to understand the character of the phase transition in the binary mixture. Figure 1 shows the (η, c) projection of the (T, η, c) critical surface of the model binary mixture (η is the packing density of the mixture, c is the concentration of species b). The arrows show the direction of the strong fluctuations (order parameter) along the critical curve. Based on the Gaussian distribution (3.1)–(3.2) we have determined the critical branch and, correspondingly, the CV η0 connected with the order parameter. The purpose of our further study will be calculating the binary mixture behaviour in the vicinity of its critical points. Appendix A The coefficients A(k), B(k), C(k) and D(k) have the forms: A = √ 2|A12|[4A2 12 + (A11 − A22) 2 − (A11 −A22) √ (A11 −A22)2 + 4A2 12] −1, B = √ 2|A12|[4A2 12 + (A11 − A22) 2 + (A11 − A22) √ (A11 − A22)2 + 4A2 12] −1, C = − √ 2 2 |A12| (A12) [A11 − A22 − √ (A11 − A22)2 + 4A2 12] × [4A2 12 + (A11 − A22) 2 − (A11 −A22) √ (A11 −A22)2 + 4A2 12] −1, D = − √ 2 2 |A12| (A12) [A11 − A22 + √ (A11 −A22)2 + 4A2 12] × [4A2 12 + (A11 − A22) 2 + (A11 − A22) √ (A11 − A22)2 + 4A2 12] −1. References 1. Anisimov M.A., Gorodetskii E.E., Kulikov V.D., Sengers J.V. // Phys. Rev. E, 1995, vol. 51, No. 2, p. 1199–1215. 2. Anisimov M.A., Gorodetskii E.E., Kulikov V.D., Povodyrev A.A., Sengers J.V. // Physica A, 1995, vol. 220, p. 277–324. 3. Chen X.S., Forstmann F. // J. Chem. Phys., 1992, vol. 97, No. 5, p. 3696–3703. 4. Parola A., Reatto L. // J. Phys.: Condens. Matter, 1993, vol. 5, p. B165–B172. 5. Parola A., Reatto L. // Advan. in Phys. 1995, vol. 44, No. 3, p. 211–298. 6. Yukhnovskii I.R., Patsahan O.V. // J. Stat. Phys., 1995, vol. 81, No. 3/4, p. 647–672. 7. Yukhnovskii I.R., Holovko M.F. Statistical Theory of Classical Equilibrium Systems. Naukova Dumka, Kiev, 1980. 8. Patsagan O.V., Yukhnovskii I.R. // Theor. Math. Phys., 1990, vol. 83, No. 1, p. 387– 397. 240 The order parameter in binary mixtures 9. Patsahan O.V., The phase transitions in binary systems. I. Random phase approxi- mation. Preprint Inst. Cond. Matter Phys. Acad. Sci. Ukraine, ICMP–92–2U, Lviv, 1992 (in Ukrainian). 10. Patsahan O.V. // Ukr. Fiz. Zh., 1996, vol. 41, No. 9, p. 877–884 (in Ukrainian). Параметр порядку у бінарних сумішах О.В.Пацаган Інститут фізики конденсованих систем НАН Укpаїни, 290011 Львів, вул. Свєнціцького, 1 Отримано 31 серпня 1998 р., в остаточному вигляді – 30 листопада 1998 р. Фазові переходи у бінарній суміші досліджуються з допомогою ме- тоду колективних змінних з виділеною системою відліку. Показано, що система описується двома наборами колективних змінних: η~k і ξ~k . Колективною змінною,зв’язаною з параметром порядку є змінна η~k=0 як у випадку критичної точки газ-рідина, так і у випадку фазового переходу змішування-незмішування. Конкретна форма η0 для кож- ного з цих явищ визначається співвідношенням між температурою, густиною, концентрацією і мікроскопічними параметрами системи, яка розглядається. Ключові слова: бінарна суміш, колективна змінна, фазовий перехід, параметр порядку PACS: 05.70.Fh, 05.70.Jk, 64.10.+h 241 242