Modelling the ion-exchange equilibrium in nanoporous materials
Distribution of a two component electrolyte mixture between the model adsorbent and a bulk aqueous electrolyte solution was studied using the replica Ornstein-Zernike theory and the grand canonical Monte Carlo method. The electrolyte components were modelled to mimic the HCl/NaCl and HCl/CaCl₂ mixtu...
Збережено в:
| Опубліковано в: : | Condensed Matter Physics |
|---|---|
| Дата: | 2012 |
| Автори: | , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут фізики конденсованих систем НАН України
2012
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/120288 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Modelling the ion-exchange equilibrium in nanoporous materials / M. Lukšič, V. Vlachy, B. Hribar-Lee // Condensed Matter Physics. — 2012. — Т. 15, № 2. — С. 23802:1-12. — Бібліогр.: 46 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-120288 |
|---|---|
| record_format |
dspace |
| spelling |
Lukšič, M. Vlachy, V. Hribar-Lee, B. 2017-06-11T14:37:03Z 2017-06-11T14:37:03Z 2012 Modelling the ion-exchange equilibrium in nanoporous materials / M. Lukšič, V. Vlachy, B. Hribar-Lee // Condensed Matter Physics. — 2012. — Т. 15, № 2. — С. 23802:1-12. — Бібліогр.: 46 назв. — англ. 1607-324X Key words: adsorption, mixed electrolytes, selectivity, Monte Carlo, replica Ornstein-Zernike theory DOI:10.5488/CMP.15.23802 arXiv:1207.3280 https://nasplib.isofts.kiev.ua/handle/123456789/120288 Distribution of a two component electrolyte mixture between the model adsorbent and a bulk aqueous electrolyte solution was studied using the replica Ornstein-Zernike theory and the grand canonical Monte Carlo method. The electrolyte components were modelled to mimic the HCl/NaCl and HCl/CaCl₂ mixtures, respectively. The matrix, invaded by the primitive model electrolyte mixture, was formed from monovalent negatively charged spherical obstacles. The solution was treated as a continuous dielectric with the properties of pure water. Comparison of the pair distribution functions (obtained by the two methods) between the various ionic species indicated a good agreement between the replica Ornstein-Zernike results and machine calculations. Among thermodynamic properties, the mean activity coefficient of the invaded electrolyte components was calculated. Simple model for the ion-exchange resin was proposed. The selectivity calculations yielded qualitative agreement with the following experimental observations: (i) selectivity increases with the increasing capacity of the adsorbent (matrix concentration), (ii) the adsorbent is more selective for the ion having higher charge density if its fraction in mixture is smaller. Використовуючи теорiю реплiкованого рiвняння Орнштейна-Цернiке i метод Монте Карло у великому канонiчному ансамблi, дослiджується розподiл двокомпонентної електролiтичної сумiшi мiж модель-им адсорбентом i водним розчином електролiту. Компоненти електролiту моделюють сумiшi HCl/NaCl i HCl/CaCl2. Матриця, заповнена примiтивною моделлю електролiтичної сумiшi, була сформована з моновалентних негативно заряджених сферичних частинок-перешкод. Розчин розглядався як неперервний дiелектрик з властивостями чистої води. Порiвняння парних функцiй розподiлу (отримане обома ме-тодами) мiж рiзними iонними сортами вказують на добре узгодження мiж результатами теорiї реплiки Орнштейна-Цернiке i машинних розрахункiв. Серед термодинамiчних властивостей, розраховано коефiцiєнт середньої активностi компонентiв електролiту в матрицi. Запропоновано просту модель для iонно-обмiнної взаємодiї. Розрахунок селективностi дав якiсне узгодження з такими експериментальними даними: (i) селективнiсть зростає з ростом ємностi адсорбента (концентрацiї матрицi), (ii) адсорбент проявляє бiльшу селективнiсть до iону з вищою зарядовою густиною, якщо його частка в сумiшi є меншою. The authors appreciate the financial support of the Slovenian Research Agency via Program P1–0201 and the Project J1–4148. en Інститут фізики конденсованих систем НАН України Condensed Matter Physics Modelling the ion-exchange equilibrium in nanoporous materials Моделювання iонно-обмiнної взаємодiї в нанопористих матерiалах Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Modelling the ion-exchange equilibrium in nanoporous materials |
| spellingShingle |
Modelling the ion-exchange equilibrium in nanoporous materials Lukšič, M. Vlachy, V. Hribar-Lee, B. |
| title_short |
Modelling the ion-exchange equilibrium in nanoporous materials |
| title_full |
Modelling the ion-exchange equilibrium in nanoporous materials |
| title_fullStr |
Modelling the ion-exchange equilibrium in nanoporous materials |
| title_full_unstemmed |
Modelling the ion-exchange equilibrium in nanoporous materials |
| title_sort |
modelling the ion-exchange equilibrium in nanoporous materials |
| author |
Lukšič, M. Vlachy, V. Hribar-Lee, B. |
| author_facet |
Lukšič, M. Vlachy, V. Hribar-Lee, B. |
| publishDate |
2012 |
| language |
English |
| container_title |
Condensed Matter Physics |
| publisher |
Інститут фізики конденсованих систем НАН України |
| format |
Article |
| title_alt |
Моделювання iонно-обмiнної взаємодiї в нанопористих матерiалах |
| description |
Distribution of a two component electrolyte mixture between the model adsorbent and a bulk aqueous electrolyte solution was studied using the replica Ornstein-Zernike theory and the grand canonical Monte Carlo method. The electrolyte components were modelled to mimic the HCl/NaCl and HCl/CaCl₂ mixtures, respectively. The matrix, invaded by the primitive model electrolyte mixture, was formed from monovalent negatively charged spherical obstacles. The solution was treated as a continuous dielectric with the properties of pure water. Comparison of the pair distribution functions (obtained by the two methods) between the various ionic species indicated a good agreement between the replica Ornstein-Zernike results and machine calculations. Among thermodynamic properties, the mean activity coefficient of the invaded electrolyte components was calculated. Simple model for the ion-exchange resin was proposed. The selectivity calculations yielded qualitative agreement with the following experimental observations: (i) selectivity increases with the increasing capacity of the adsorbent (matrix concentration), (ii) the adsorbent is more selective for the ion having higher charge density if its fraction in mixture is smaller.
Використовуючи теорiю реплiкованого рiвняння Орнштейна-Цернiке i метод Монте Карло у великому канонiчному ансамблi, дослiджується розподiл двокомпонентної електролiтичної сумiшi мiж модель-им адсорбентом i водним розчином електролiту. Компоненти електролiту моделюють сумiшi HCl/NaCl i HCl/CaCl2. Матриця, заповнена примiтивною моделлю електролiтичної сумiшi, була сформована з моновалентних негативно заряджених сферичних частинок-перешкод. Розчин розглядався як неперервний дiелектрик з властивостями чистої води. Порiвняння парних функцiй розподiлу (отримане обома ме-тодами) мiж рiзними iонними сортами вказують на добре узгодження мiж результатами теорiї реплiки Орнштейна-Цернiке i машинних розрахункiв. Серед термодинамiчних властивостей, розраховано коефiцiєнт середньої активностi компонентiв електролiту в матрицi. Запропоновано просту модель для iонно-обмiнної взаємодiї. Розрахунок селективностi дав якiсне узгодження з такими експериментальними даними: (i) селективнiсть зростає з ростом ємностi адсорбента (концентрацiї матрицi), (ii) адсорбент проявляє бiльшу селективнiсть до iону з вищою зарядовою густиною, якщо його частка в сумiшi є меншою.
|
| issn |
1607-324X |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/120288 |
| citation_txt |
Modelling the ion-exchange equilibrium in nanoporous materials / M. Lukšič, V. Vlachy, B. Hribar-Lee // Condensed Matter Physics. — 2012. — Т. 15, № 2. — С. 23802:1-12. — Бібліогр.: 46 назв. — англ. |
| work_keys_str_mv |
AT luksicm modellingtheionexchangeequilibriuminnanoporousmaterials AT vlachyv modellingtheionexchangeequilibriuminnanoporousmaterials AT hribarleeb modellingtheionexchangeequilibriuminnanoporousmaterials AT luksicm modelûvannâionnoobminnoívzaêmodiívnanoporistihmaterialah AT vlachyv modelûvannâionnoobminnoívzaêmodiívnanoporistihmaterialah AT hribarleeb modelûvannâionnoobminnoívzaêmodiívnanoporistihmaterialah |
| first_indexed |
2025-12-07T18:19:47Z |
| last_indexed |
2025-12-07T18:19:47Z |
| _version_ |
1850874619189264384 |