On the effect of superfluid flows on the interaction of microwaves with He II

The paper proposes a possible mechanism of interaction of microwaves with superfluid helium that results in an experimentally observed narrow peak of microwave absorption on the frequencies by the order of the roton frequency. The obtained microwave photon absorption coefficient depends on the local...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Condensed Matter Physics
Дата:2012
Автори: Khodusov, V.D., Naumovets, A.S.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 2012
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/120302
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:On the effect of superfluid flows on the interaction of microwaves with He II / V.D. Khodusov, A.S. Naumovets // Condensed Matter Physics. — 2012. — Т. 15, № 4. — С. 43601:1-4. — Бібліогр.: 21 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-120302
record_format dspace
spelling Khodusov, V.D.
Naumovets, A.S.
2017-06-11T14:52:12Z
2017-06-11T14:52:12Z
2012
On the effect of superfluid flows on the interaction of microwaves with He II / V.D. Khodusov, A.S. Naumovets // Condensed Matter Physics. — 2012. — Т. 15, № 4. — С. 43601:1-4. — Бібліогр.: 21 назв. — англ.
PACS: 67.25.du, 67.30.eh, 67.25.dt
DOI:10.5488/CMP.15.43601
arXiv:1212.6346
https://nasplib.isofts.kiev.ua/handle/123456789/120302
The paper proposes a possible mechanism of interaction of microwaves with superfluid helium that results in an experimentally observed narrow peak of microwave absorption on the frequencies by the order of the roton frequency. The obtained microwave photon absorption coefficient depends on the local equilibrium distribution function which is established due to fast roton-roton and roton-phonon interactions. With the availability of superfluid flows, the local equilibrium distribution function depends on their velocity. The critical velocity of the flows, at which the absorption of microwaves is replaced by their radiation, is found.
В роботi запропоновано механiзм взаємодiї надвисокочастотних хвиль iз надплинним гелiєм, який пояснює експериментально спостережуваний вузький пiк поглинання надвисокочастотних хвиль з частотою порядку ротонної частоти. Отриманий коефiцiєнт поглинання надвисокочастотних фотонiв залежить вiд локально-рiвноважної функцiї розподiлу, яка встановлюється завдяки швидких ротон-ротонних та ротон-фононних взаємодiй. При наявностi надплинних потокiв, локально-рiвноважна функцiя розподiлу залежить вiд їхньої швидкостi. Отримано критичну швидкiсть потокiв, за якої поглинання надвисокочастотних хвиль змiнюється на їхнє випромiнювання.
en
Інститут фізики конденсованих систем НАН України
Condensed Matter Physics
On the effect of superfluid flows on the interaction of microwaves with He II
Вплив надплинних потокiв на взаємодiю надвисокочастотних хвиль з Не II
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title On the effect of superfluid flows on the interaction of microwaves with He II
spellingShingle On the effect of superfluid flows on the interaction of microwaves with He II
Khodusov, V.D.
Naumovets, A.S.
title_short On the effect of superfluid flows on the interaction of microwaves with He II
title_full On the effect of superfluid flows on the interaction of microwaves with He II
title_fullStr On the effect of superfluid flows on the interaction of microwaves with He II
title_full_unstemmed On the effect of superfluid flows on the interaction of microwaves with He II
title_sort on the effect of superfluid flows on the interaction of microwaves with he ii
author Khodusov, V.D.
Naumovets, A.S.
author_facet Khodusov, V.D.
Naumovets, A.S.
publishDate 2012
language English
container_title Condensed Matter Physics
publisher Інститут фізики конденсованих систем НАН України
format Article
title_alt Вплив надплинних потокiв на взаємодiю надвисокочастотних хвиль з Не II
description The paper proposes a possible mechanism of interaction of microwaves with superfluid helium that results in an experimentally observed narrow peak of microwave absorption on the frequencies by the order of the roton frequency. The obtained microwave photon absorption coefficient depends on the local equilibrium distribution function which is established due to fast roton-roton and roton-phonon interactions. With the availability of superfluid flows, the local equilibrium distribution function depends on their velocity. The critical velocity of the flows, at which the absorption of microwaves is replaced by their radiation, is found. В роботi запропоновано механiзм взаємодiї надвисокочастотних хвиль iз надплинним гелiєм, який пояснює експериментально спостережуваний вузький пiк поглинання надвисокочастотних хвиль з частотою порядку ротонної частоти. Отриманий коефiцiєнт поглинання надвисокочастотних фотонiв залежить вiд локально-рiвноважної функцiї розподiлу, яка встановлюється завдяки швидких ротон-ротонних та ротон-фононних взаємодiй. При наявностi надплинних потокiв, локально-рiвноважна функцiя розподiлу залежить вiд їхньої швидкостi. Отримано критичну швидкiсть потокiв, за якої поглинання надвисокочастотних хвиль змiнюється на їхнє випромiнювання.
url https://nasplib.isofts.kiev.ua/handle/123456789/120302
citation_txt On the effect of superfluid flows on the interaction of microwaves with He II / V.D. Khodusov, A.S. Naumovets // Condensed Matter Physics. — 2012. — Т. 15, № 4. — С. 43601:1-4. — Бібліогр.: 21 назв. — англ.
work_keys_str_mv AT khodusovvd ontheeffectofsuperfluidflowsontheinteractionofmicrowaveswithheii
AT naumovetsas ontheeffectofsuperfluidflowsontheinteractionofmicrowaveswithheii
AT khodusovvd vplivnadplinnihpotokivnavzaêmodiûnadvisokočastotnihhvilʹzneii
AT naumovetsas vplivnadplinnihpotokivnavzaêmodiûnadvisokočastotnihhvilʹzneii
first_indexed 2025-11-25T23:52:48Z
last_indexed 2025-11-25T23:52:48Z
_version_ 1850588862757208064
fulltext Condensed Matter Physics, 2012, Vol. 15, No 4, 43601: 1–4 DOI: 10.5488/CMP.15.43601 http://www.icmp.lviv.ua/journal On the effect of superfluid flows on the interaction of microwaves with He II V.D. Khodusov, A.S. Naumovets Karazin Kharkov National University, 4 Svobody Sq., 61077 Kharkov, Ukraine Received July 3, 2012, in final form August 22, 2012 The paper proposes a possible mechanism of interaction of microwaves with superfluid helium that results in an experimentally observed narrow peak of microwave absorption on the frequencies by the order of the roton frequency. The obtained microwave photon absorption coefficient depends on the local equilibrium distribution function which is established due to fast roton-roton and roton-phonon interactions. With the availability of superfluid flows, the local equilibrium distribution function depends on their velocity. The critical velocity of the flows, at which the absorption of microwaves is replaced by their radiation, is found. Key words: superfluid, rotons, microwaves PACS: 67.25.du, 67.30.eh, 67.25.dt 1. Introduction The experiments aimed at the study of the absorption of microwaves in the frequency range 40÷ 200 GHz in superfluid helium have produced a number of unexpected results. Thus, a resonant absorp- tion of microwaves has been revealed in the frequencies relevant to roton energy [1–4]; in this case, a narrow absorption line near the minimum energy of rotons has been observed against the background of a wide pedestal and, what is more, the results of the measurements of temperature dependence of this narrow line correlated with the change in the minimum roton energy. Besides, the effect of the velocity of the relative motion of normal Vn and superfluid Vs components on the character of the resonant in- teraction of microwaves has been found. The microwave absorption coefficient decreased at an increase of the velocity of the relative motion. When there was an excess of some critical velocity, the absorption of waves was replaced by their radiation.Similar effects take place in plasma physics when one describes linear and nonlinear Landau attenuation of plasma waves on particles as well as the excitation of these waves by particle streams moving at the velocity higher than some critical value [5]. These experimental results are indicative of an intensified manifestation of electric properties in he- lium at temperatures below Tλ. Moreover, they point out a special role, which the quasi-particles (i.e., phonons, rotons) should play in explaining these experiments. In [6–12], some attempts were made to theoretically explain these features. In the above works, a possible mechanism of microwave interaction with superfluid helium is proposed. It consists in taking into account the effect of its electric properties on quasi-particles and their kinetics. In the temperature range, in which the experiments were carried out (1.4÷2.3 K), rotons had a dominant role. They determined both thermodynamic and kinetic properties of He II. Fast roton-roton and roton-phonon interactions provide the establishment of a hydrodynamic regime in gas of quasi-particles. The explanation of these effects can be made if we take into account the summands in the roton energy that are linear in the electric field [13], i.e., if one suggests that a roton has a dynamic dipole moment. © V.D. Khodusov, A.S. Naumovets, 2012 43601-1 http://dx.doi.org/10.5488/CMP.15.43601 http://www.icmp.lviv.ua/journal V.D. Khodusov, A.S. Naumovets 2. Raman scattering of electromagnetic waves from quasiparticles in He II The interaction of electromagnetic waves with superfluid helium had been previously studied, both theoretically and experimentally, while describing the Raman light scattering from phonons, second sound and rotons [14–19]. In references [15, 16], the two-roton scattering of light was experimentally observed. Since the roton momentum considerably exceeds (by some orders) the photon momentum (visible light and microwaves) [17], in order to monitor the electromagnetic wave Raman scattering from rotons, it is necessary to have two rotons, which follows from the momentum conservation. Energy and momentum conservation permits a birth of two rotons by photon and photon scattering from rotons. For the first process, the energy and momentum conservation laws are: ħω1 =ħω2 +ε3 +ε4 , ħk1 =ħk2 +p3 +p4 , (2.1) where ω1,2 and k1,2 are the frequencies and wave vectors of the incident and the reflected electromag- netic wave accordingly, ε3,4 and p3,4 are the energies and the momenta of rotons, respectively. The scat- tering in this case occurs with the excitation of two rotons with the opposite momenta p3 ≈−p4. Taking into account that the roton energy is ε=∆+(p −p0)2/2µ , from (2.1) one can obtain for Stokes (red) satellite: ħ(ω1 −ω2) Ê 2∆+ (p3 −p0)2 µ , (2.2) where p0 is the value of a momentum, at which the energy or roton has a minimum equal to ∆, µ is the effective mass of roton. The density of the number of roton energy states per a unit of volume is equal to: ρ(ε) = √ 2µ 4π4ħ3 [ p0 + √ 2µ(ε−∆) ]2 p ε−∆ . (2.3) From equation (2.3) it follows that the basic role in these processes is played by rotons having minimal energy ε ≈ ∆ . Then, as follows from equation (2.2), two-roton light absorption takes place, as observed in works [15] and [16]. Theoretical explanation of these experiments as well as the detection of matrix elements of photon and roton interactions are given in references [17] and [18]. For the second process, describing photon scattering from rotons, conservation laws of energy and momentum are: ħω1 +ε3 =ħω2 +ε4 , ħk1 +p3 =ħk2 +p4 . (2.4) In contrast to the first case, here we have p3 ≈ p4. As follows from the compatibility condition of the system (2.4), the next condition is imposed on frequencies of the incident and the reflected electromagnetic waves, for Stokes satellite: 0 É (ω1 −ω2) É 2 ( p3 −p0 ) |k1 −k2|+ħ|k1 −k2|2 2µ . (2.5) This condition, as opposed to (2.2), determines an upper limit for (ω1 −ω2) and shows that frequencies ω1 and ω2 are closer to each other than in the previous case. Indeed, under the conditions corresponding to those for the experiments in [15], estimations give the following result for p3 ≈ p0, k1 ≈ −k2, k1 ≈ 105 cm−1: (ω1 −ω2) ≈ 2·106 s−1. In the first case, under the same conditions, from equation (2.2) we obtain (ω1 −ω2) ≈ 2.27 ·1012 s−1, if we take the value for the roton minimal energy at temperature T = 1.4 K ∆ = 8.65 K. Stokes line intensity of Raman light scattering on rotons due to the second process, as it follows from the research [18], is e−∆/T times less than that one due the first process. Moreover, it is in other frequency ranges (MHz). We hope that with the use of modern equipment it will be possible to detect this line in spite of small intensity. A method of resonant combinational light scattering represents a special interest in studying Raman scattering [20]. Thus, the instances are possible when light frequency coincides with the own frequencies of elementary excitations. In this case, there is an imposition of two effects: a forced resonant excitation of quasi-particles by electromagnetic wave and photon scattering from quasi-particles. If an electromagnetic wave frequency tends to roton energy, the processes of the birth of two rotons are forbidden, as it follows from energy conservation. 43601-2 On the effect of superfluid flows on the interaction of microwaves with He II 3. The narrow resonant line and the effect of the flows Weassume that a narrow resonant line, which is observed on the background of the pedestal (Rayleigh wings), is caused by the photons scattering from rotons. The quasi-local distribution function of rotons in this case is established in a time 1/γr ∼ 10−11 s as: nr 0 = [ exp ( ε+pW T ) −1 ]−1 , (3.1) where W = Vn −Vs is the relative velocity. The change in a unit of time of a number of microwave photons ∆N1 with energies ħω1 due to the induced processes of scattering of photons from rotons can be written in the form: ∂∆N1 ∂t = ∆N1 ∫ |Φ (1,3;2,4)|2 N2 (n04 −n03)δ(ħ (ω1 −ω2)+ε3 −ε4) (3.2) × δ ( p4 −p3 −ħ (k1 −k2) ) d3p4d3p3 (2πħ)6 d3k2 (2π)3 . |Φ (1,3;2,4)| is a matrix element of interaction of rotons and microwaves. It depends from an interaction constant, which determines the interaction between the dipole moment of rotons and the electric com- ponent of microwaves. This constant is small, because the electromagnetic field relaxation occurs during the period of an order of seconds after turning off the field [21]. Taking into account that the momentum of photons is much smaller than that of the rotons and p3 ≈ p4, we can write n04 as: n04 = n03 + n03 T [−ħ (ω1 −ω2)+ħ (k1 −k2)W] . (3.3) If we try to find a solution to this equation in the form ∆N ∼ e−γt , we obtain γ = − 1 T ∫ |Φ (1,3;2,4)|2 n03N2 [(ω1 −ω2)− (k1 −k2)W ] (3.4) × 2µ |k1 −k2| √ (p3 −p0)2 +2µħ(ω1 −ω2) 2πp2 3dp3 (2πħ)3 d3k2 (2π)3 . By comparing this attenuation factor with the one experimentally measured, it is possible to obtain the matrix element order estimates of interaction of microwave photons and rotons. The absorption coeffi- cient of microwaves depends upon ω1. Assuming that the frequencies ω1, ω2 fall into the same range in the vicinity of the resonance, it is possible to determine the boundary conditions from (2.5): ∆ ħ − 2 ∣ ∣p3 −p0 ∣ ∣ |k1 −k2|+ħ|k1 −k2|2 4µ Éω1 É ∆ ħ + 2 ∣ ∣p3 −p0 ∣ ∣ |k1 −k2|+ħ|k1 −k2|2 4µ . From this relation it follows, that both the resonant frequency itself and the limiting values of the permitted frequencies of microwaves change as a function of temperature basically in the same way as the energy gap in a roton spectrum, which corresponds to the experimental results. Besides, if k1 ≈ −k2 and ∣ ∣p3 −p0 ∣ ∣ ≈ √ 2µT for the thermal rotons, the width of a resonant curve at zero intensity is defined by the expression: ∆ω≈ 2 ( √ 2µT k1 +ħk2 1 )/ µ. (3.5) If T = 1.4 K, k1 ≈ 37.7 cm−1, then ∆ω ≈ 4.7 ·105 Hz. It coincides by the order of the magnitude with the one which has been observed in the experiment. From the expression (3.4), for γ it is obvious that there exists such a relative critical velocity Wcr at which γ= 0. At the velocities greater than Wcr, absorption of microwaves is replaced by their radiation. After the calculation of the remaining integral, we obtain the critical velocity: Wcr = 8 3 ħk1 µ . Substituting the values of k1 and µ, we obtain the following value of Wcr ∼ 10−2 cm/s. 43601-3 V.D. Khodusov, A.S. Naumovets 4. Conclusions A possiblemechanism of interaction betweenmicrowaves and superfluidHe is proposed in the paper. The obtained microwave phonon absorption coefficient depends on the local equilibrium distribution function, which is established due to fast roton-roton and roton-phonon interactions. It is shown that the resonant line changes with the temperature similarly to the minimum roton energy. The value of the resonant line width is obtained, which is in agreement with the experimentally observed one. The local equilibrium distribution function and, correspondingly, the microwave absorption coefficient depend on the velocity of superfluid flows. There is found a critical velocity of flows at which the absorption of microwaves is replaced by their radiation. References 1. Rybalko A.S., Rubets S.P., Rudavskii E.Ya., Tikhiy V.A., Tarapov S.A., Golovashchenko R.V., Derkach V.N., Phys. Rev. B, 2007, 76, 140503(R); doi:10.1103/PhysRevB.76.140503. 2. Rybalko A.S., Rubets S.P., Rudavskii E.Ya., Tikhiy V.A., Golovashchenko R.V., Derkach V.N., Tarapov S.A., Low Temp. Phys., 2008, 34, 254; doi:10.1063/1.2911649. 3. Rybalko A.S., Rubets S.P., Rudavskii E.Ya., Tikhiy V.A., Tarapov S.A., Golovashchenko R.V., Derkach V.N., Low Temp. Phys., 2008, 34, 497; doi:10.1063/1.2957000. 4. Rybalko A.S., Rubets S.P., Rudavskii E.Ya., Tikhiy V.A., Poluektov U.M., Golovashchenko R.V., Derkach V.N., Tara- pov S.A., Usatenko O.V., Low Temp. Phys., 2009, 35, 837; doi:10.1063/1.3266909. 5. Akhiezer A.I., Akhiezer I.A., Polovin R.V., Sitenko A.G., Stepanov K.N., Plasma Electrodynamics, ed. D. ter Haar, vol. 1, Pergamon Press, Oxford, New York, 1975. 6. Kosevich A.M., Low Temp. Phys., 2005, 31, 37; doi:10.1063/1.1820356. 7. Kosevich A.M., Low Temp. Phys., 2005, 31, 839; doi:10.1063/1.2126942. 8. Khodusov V.D., Visn. Khark. Univ., 2004, 642, No. 3(25), 79. 9. Litvinenko D.M., Khodusov V.D., Visn. Khark. Univ., 2006, 721, No. 1(29), 31. 10. Melnikovsky L.A., Preprint arXiv:cond-mat/0505102v3, 2006. 11. Natsik V.D., Low Temp. Phys., 2005, 31, 915; doi:10.1063/1.2126950. 12. Loktev V.M., Tomchenko M.D., Low Temp. Phys., 2008, 34, 262; doi:10.1063/1.2911650. 13. Khodusov V.D., Naumovets A.S., Visn. Khark. Univ., 2010, 899, No. 2(46), 97. 14. Woolf M., Platzmann P., Phys. Rev. Lett., 1966, 17, 294; doi:10.1103/PhysRevLett.17.294. 15. Greytak T.J., Yan J., Phys. Rev. Lett., 1969, 22, 987; doi:10.1103/PhysRevLett.22.987. 16. Greytak T.J., Woerner R., Yan J., Benjamin R., Phys. Rev. Lett., 1970, 25, 1547; doi:10.1103/PhysRevLett.25.1547. 17. Halley J.W., Phys. Rev., 1969, 181, 338; doi:10.1103/PhysRev.181.338. 18. Stephen M., Phys. Rev., 1969, 187, 279; doi:10.1103/PhysRev.187.279. 19. Ginzburg V.L., Zh. Eksp. Teor. Fiz., 1943, 13, 243. 20. Martin R.M., Falicov L.M., In: Light Scattering in Solids, ed. M. Cardona, Springer-Verlag, Berlin, 1975. 21. Rybalko A.S. (private communication). Вплив надплинних потокiв на взаємодiю надвисокочастотних хвиль з Не II В.Д. Ходусов, А.С. Наумовець Харкiвський нацiональний унiверситет iм. В.Н. Каразiна, пл. Свободи, 4, 61077 Харкiв, Україна В роботi запропоновано механiзм взаємодiї надвисокочастотних хвиль iз надплинним гелiєм, який по- яснює експериментально спостережуваний вузький пiк поглинання надвисокочастотних хвиль з часто- тою порядку ротонної частоти. Отриманий коефiцiєнт поглинання надвисокочастотних фотонiв залежить вiд локально-рiвноважної функцiї розподiлу, яка встановлюється завдяки швидких ротон-ротонних та ротон-фононних взаємодiй. При наявностi надплинних потокiв, локально-рiвноважна функцiя розподiлу залежить вiд їхньої швидкостi. Отримано критичну швидкiсть потокiв, за якої поглинання надвисокоча- стотних хвиль змiнюється на їхнє випромiнювання. Ключовi слова: надплиннiсть, ротони, надвисокочастотнi хвилi 43601-4 http://dx.doi.org/10.1103/PhysRevB.76.140503 http://dx.doi.org/10.1063/1.2911649 http://dx.doi.org/10.1063/1.2957000 http://dx.doi.org/10.1063/1.3266909 http://dx.doi.org/10.1063/1.1820356 http://dx.doi.org/10.1063/1.2126942 http://dx.doi.org/10.1063/1.2126950 http://dx.doi.org/10.1063/1.2911650 http://dx.doi.org/10.1103/PhysRevLett.17.294 http://dx.doi.org/10.1103/PhysRevLett.22.987 http://dx.doi.org/10.1103/PhysRevLett.25.1547 http://dx.doi.org/10.1103/PhysRev.181.338 http://dx.doi.org/10.1103/PhysRev.187.279 Introduction Raman scattering of electromagnetic waves from quasiparticles in He II The narrow resonant line and the effect of the flows Conclusions