Semiquantitative theory for high-field low-temperature properties of a distorted diamond spin chain
We consider the antiferromagnetic Heisenberg model on a distorted diamond chain and use the localized-magnon picture adapted to a distorted geometry to discuss some of its high-field low-temperature properties. More specifically, in our study we assume that the partition function for a slightly dist...
Gespeichert in:
| Veröffentlicht in: | Condensed Matter Physics |
|---|---|
| Datum: | 2012 |
| Hauptverfasser: | , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут фізики конденсованих систем НАН України
2012
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/120310 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Semiquantitative theory for high-field low-temperature properties of a distorted diamond spin chain / O. Derzhko, J. Richter, O. Krupnitska // Condensed Matter Physics. — 2012. — Т. 15, № 4. — С. 43702:1-10 — Бібліогр.: 39 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | We consider the antiferromagnetic Heisenberg model on a distorted diamond chain and use the localized-magnon picture adapted to a distorted geometry to discuss some of its high-field low-temperature properties. More specifically, in our study we assume that the partition function for a slightly distorted geometry has the same form as for ideal geometry, though with slightly dispersive one-magnon energies. We also discuss the relevance of such a description to azurite.
Ми розглядаємо антиферомагнiтну модель Гайзенберга на деформованому ромбiчному ланцюжку i використовуємо картину локалiзованих магнонiв, пристосовану до деформованої геометрiї, щоб обговорити деякi низькотемпературнi властивостi моделi у сильних полях. Конкретнiше, у нашому дослiдженнi ми вважаємо, що статистична сума у випадку дещо деформованої геометрiї має таку ж форму як i у випадку iдеальної геометрiї, але з трошки дисперсними одномагнонними енергiями. Ми також обговорюємо застосовнiсть такого опису для азуриту.
|
|---|