The screening potentials of ion-dipole system adsorbed in ion-dipolar disordered matrices

The replica Ornstein-Zernike equations ion-molecular fluid adsorbed in a disordered ion-molecular matrix were applied. The explicit expressions for the potentials screening by the point particles are obtained. The analysis of the screening potentials for ion-dipolar case are presented. It is shown...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:1999
Hauptverfasser: Holovko, M.F., Polishchuk, Z.V.
Sprache:English
Veröffentlicht: Інститут фізики конденсованих систем НАН України 1999
Schriftenreihe:Condensed Matter Physics
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/120390
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:The screening potentials of ion-dipole system adsorbed in ion-dipolar disordered matrices / M.F. Holovko, Z.V. Polishchuk // Condensed Matter Physics. — 1999. — Т. 2, № 2(18). — С. 267-272. — Бібліогр.: 12 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-120390
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1203902025-02-09T20:55:13Z The screening potentials of ion-dipole system adsorbed in ion-dipolar disordered matrices Екрановані потенціали для іонно-дипольної системи, адсорбованої на іонно-дипольних невпорядкованих матрицях Holovko, M.F. Polishchuk, Z.V. The replica Ornstein-Zernike equations ion-molecular fluid adsorbed in a disordered ion-molecular matrix were applied. The explicit expressions for the potentials screening by the point particles are obtained. The analysis of the screening potentials for ion-dipolar case are presented. It is shown that fluid-fluid interionic potentials include connected and blocked parts. Розглядається метод репліки для рівнянь Орнштейна-Церніке для іонно-молекулярної рідини, адсорбованої в невпорядкованій іонно-молекулярній матриці. Отримано явні вирази для екранованих потенціалів для іонно-дипольного випадку. Показано, що флюїд-флюїд міжіонний потенціал розкладається на зв’язуючу і блоковану частини. 1999 The screening potentials of ion-dipole system adsorbed in ion-dipolar disordered matrices / M.F. Holovko, Z.V. Polishchuk // Condensed Matter Physics. — 1999. — Т. 2, № 2(18). — С. 267-272. — Бібліогр.: 12 назв. — англ. 1607-324X DOI:10.5488/CMP.2.2.267 PACS: 61.20, 05.20 https://nasplib.isofts.kiev.ua/handle/123456789/120390 en Condensed Matter Physics application/pdf Інститут фізики конденсованих систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The replica Ornstein-Zernike equations ion-molecular fluid adsorbed in a disordered ion-molecular matrix were applied. The explicit expressions for the potentials screening by the point particles are obtained. The analysis of the screening potentials for ion-dipolar case are presented. It is shown that fluid-fluid interionic potentials include connected and blocked parts.
author Holovko, M.F.
Polishchuk, Z.V.
spellingShingle Holovko, M.F.
Polishchuk, Z.V.
The screening potentials of ion-dipole system adsorbed in ion-dipolar disordered matrices
Condensed Matter Physics
author_facet Holovko, M.F.
Polishchuk, Z.V.
author_sort Holovko, M.F.
title The screening potentials of ion-dipole system adsorbed in ion-dipolar disordered matrices
title_short The screening potentials of ion-dipole system adsorbed in ion-dipolar disordered matrices
title_full The screening potentials of ion-dipole system adsorbed in ion-dipolar disordered matrices
title_fullStr The screening potentials of ion-dipole system adsorbed in ion-dipolar disordered matrices
title_full_unstemmed The screening potentials of ion-dipole system adsorbed in ion-dipolar disordered matrices
title_sort screening potentials of ion-dipole system adsorbed in ion-dipolar disordered matrices
publisher Інститут фізики конденсованих систем НАН України
publishDate 1999
url https://nasplib.isofts.kiev.ua/handle/123456789/120390
citation_txt The screening potentials of ion-dipole system adsorbed in ion-dipolar disordered matrices / M.F. Holovko, Z.V. Polishchuk // Condensed Matter Physics. — 1999. — Т. 2, № 2(18). — С. 267-272. — Бібліогр.: 12 назв. — англ.
series Condensed Matter Physics
work_keys_str_mv AT holovkomf thescreeningpotentialsofiondipolesystemadsorbediniondipolardisorderedmatrices
AT polishchukzv thescreeningpotentialsofiondipolesystemadsorbediniondipolardisorderedmatrices
AT holovkomf ekranovanípotencíalidlâíonnodipolʹnoísistemiadsorbovanoínaíonnodipolʹnihnevporâdkovanihmatricâh
AT polishchukzv ekranovanípotencíalidlâíonnodipolʹnoísistemiadsorbovanoínaíonnodipolʹnihnevporâdkovanihmatricâh
AT holovkomf screeningpotentialsofiondipolesystemadsorbediniondipolardisorderedmatrices
AT polishchukzv screeningpotentialsofiondipolesystemadsorbediniondipolardisorderedmatrices
first_indexed 2025-11-30T16:34:11Z
last_indexed 2025-11-30T16:34:11Z
_version_ 1850233798454673408
fulltext Condensed Matter Physics, 1999, Vol. 2, No 2(18), pp. 267–272 The screening potentials of ion-dipole system adsorbed in ion-dipolar disordered matrices M.F.Holovko, Z.V.Polishchuk Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii Str., 290011 Lviv, Ukraine Received September 4, 1998 The replica Ornstein-Zernike equations ion-molecular fluid adsorbed in a disordered ion-molecular matrix were applied. The explicit expressions for the potentials screening by the point particles are obtained. The analysis of the screening potentials for ion-dipolar case are presented. It is shown that fluid-fluid interionic potentials include connected and blocked parts. Key words: replica Ornstein-Zernike equations, screening potentials, porous media, ion-molecular system PACS: 61.20, 05.20 The effects of quenched disorder on the fluid properties have received increased attention in recent years. In theoretical studies the matrix-fluid system is considered as a special binary mixture in which the matrix is treated as a rigid set of obsta- cles,obtained by quenching an equilibrium configuration of particles (usually noted as species “0”) with the fluid molecules (noted as species “1”) at equilibrium in the presence of quenched particles. Resulting from the applying of the replica trick the description of the original matrix-fluid system was replaced by a multicomponent equilibrium (s+1) component mixture for which it was possible to use the standard methods of liquid-state theory (the integral equations, cluster expansions ets.). The specific feature of such (s+1)-component mixture is that a pair of fluid particles from different replicas has no interaction and at the end of calculation it takes the limit s → 0, assuming that there is no problem in performing the analytical continuation for noninteger values of s. In this way Given and Stell [1-2] recently proposed a set of coupled integral equations, the so-called replica Ornstein-Zernike (ROZ) equations, relating the total pair correlation functions hαβ(r) of fluid-matrix mixture to the corresponding direct c© M.F.Holovko, Z.V.Polishchuk 267 M.F.Holovko, Z.V.Polishchuk correlation functions cαβ(r). Using the Fourier-transform f̂(k) = 4π ∞ ∫ 0 r2 dr sin kr kr f(r) (1) the formal solution of these ROZ equations can be represented in the following form ĥ00(k) = ĉ00(k) 1− ρ0ĉ00(k) , (2) ĥ01(k) = ĉ01(k) [1− ρ0ĉ00(k)] [1− ρ1ĉc11(k)] , (3) ĥc 11 (k) = ĉc11(k) 1− ρ1ĉc11(k) , (4) ĥ12(k) = ĉ12(k) [1− ρ1ĉc11(k)] 2 + ρ0ĉ01(k)ĉ10(k) [1− ρ0ĉ00(k)] [1− ρ1ĉc11(k)] 2 , (5) where due to the symmetry h01(r) = h10(r), c01(r) = c10(r), ρ0 and ρ1 are average density of matrix and fluid particles correspondingly. The fluid-fluid pair correlation functions are decomposed into two parts h11(r) = hc 11(r) + h12(r), c11(r) = cc11(r) + c12(r), (6) where hc 11 (r) and cc 11 (r) are the connected parts; h12(r) = hb 11 (r) and c12(r) = cb 11 (r) are the correlation functions of two fluid molecules from different replica copies, so-called blocked part of the fluid-fluid pair correlation functions. For this time the application of ROZ equations was restricted the description of simple fluids in random and quenched matrices [3-6].Only recently a study of associating fluids [6-7] and ionic fluids [8-9] in porous media using ROZ equations was initiated. In particular, in [8] the ROZ equations were applied for the investigation of the screening potentials for the proposed in [10] model of ionic fluids adsorbed in an electroneutral totally disordered matrix of ion. In this model both ionic subsystems were presented as point charges interacting via Coulomb interactions. The important influence of the blocking effects of the quenched matrix on the screening between the fluid ions was shown. The obtained screening potentials can be used to build the cluster expansions of pair correlation functions and free energy of the system [11-12] or to develop the renormalization scheme for the long-range terms in ion- ion correlations for the numerical solution ROZ equations [9]. However the model considered and the results obtained should be, as usual, [11-12] revised in terms of more civilized ion-molecular models which take into account explicitly the solvent molecules and dielectric peculiarities of the matrix. Investigating the screening potentials of such ion-molecular fluid-matrix model is the aim of this article. We consider a general case of two electroneutral three- component ion-molecular subsystems. The first one represents the matrix and the other one is fluid. As regards the usual ion-molecular systems [11-12] the ions have 268 The screening potentials in disordered matrices the charges ezαe and the molecules characterized by the generalized charges Qα s (▽), where index α = 0 or 1 and denotes the quenched and fluid component respectively. The index a denotes the ions and the index s denotes the molecules. For compactness we will also use the indices x, y, which include ions and molecules Qα x(▽) = { ezαa , x = a Qα s (▽), x = s. (7) Thus, the electrostatic interactions between the particles in the model considered can be represented in the following form Φαβ xy (r) = Qα x(▽)Qβ y(−▽) 1 R . (8) For simplicity, in this case we consider: the molecules with point dipole moment ~p s [11-12] for which Qα s (▽) = (pαs ▽). (9) In order to obtain the expressions for the screening potentials by point particles we should put [11-12] Cαβ xy (r) = − 1 kBT Φαβ xy (r), hαβ xy (r) = Gαβ xy (r), (10) where Gαβ xy (r) are the screening potentials, Φαβ xy (r) are given by equation (8) and Φ12 xy(r) = 0 since the particles from different replicas do not interact. By expanding the Coulomb potential 1/r in a Fourier series the electrostatic potentials Φαβ xy (r) can be represented in the following form Φαβ xy (r) = ∑ k 1 V 4π k2 Q̂α x(k)Q β y (−k)eik̄r̄, (11) where Q̂α x(k) = ezαa for x = a and Q̂α x(k) = Q̂s(k) = i(pα s k) for x = s. Now according to expressions (2)–(5) and in assumption (10) the Fourier trans- form of the screening potentials can be explicitly represented as follows: Ĝ00 xy(k) = − 1 kBT Q̂0 x(k)Q̂ 0 y(−k) ( ε0(k) + κ2 0 k2 ) k2 , (12) Ĝ01 xy(k) = − 1 kBT Q0 x(k)Q 0 y(−k) k2 [ ε0(k) + κ2 0 k2 ] [ ε1(k) + κ2 1 k2 ] , (13) Ĝ11 xy(k) = Ĝc,11 xy (k) + Ĝ12 xy(k), (14) Ĝc,11 xy (k) = − 1 kBT Q̂x(k)Q 1 y(−k) k2 ( ε1(k) + κ2 1 k2 ) , (15) 269 M.F.Holovko, Z.V.Polishchuk Ĝ12 xy(k) = 1 kBT Q1 x(k)Q 1 y(−k) 1 k2 ×    ε0(k)−1 ε0(k) 1 ( ε1(k)+ κ2 1 k2 )2 + κ2 0 ε0(k)k2 1 ( κ2 0 k2 + ε0(k) )( ε1(k)+ κ2 1 k2 )2    ,(16) where κ0 = [ 4π 1 kBT ∑ aρ0ae 2(z0a) 2 ] 1 2 , κ1 = [ 4π 1 kBT ∑ aρ1ae 2(z1a) 2 ] 1 2 is the recipro- cal Debye-Huckel radius of screening for the matrix and fluid ionic subsystem, re- spectively. As usual [11-12], the molecular screening introduces the static dielectric functions for the matrix and fluid subsystems, respectively ε0(k) = 1 + 4π 1 kBT ρ0 s ∫ dΩ0 s 1 k2 Q0 s (k)Q0 s (−k) = ε0 = 1 + 3y0 , (17) ε1(k) = 1 + 4π 1 kBT ρ1s ∫ dΩ1 s 1 k2 Q1 s (k)Q 1 s (−k) = ε1 = 1 + 3y1 , (18) which have the meaning of the dielectic constant of matrix and fluid subsystem respectively, y0 = 4 3 π 1 kBT ρ0 s (p0 s )2, y1 = 4 3 π 1 kBT ρ1 s (p1 s )2. The expressions (12)–(16) are the main result of this article. For the ion-dipolar case ε0(k) = ε0 and ε1(k) = ε1 the screening potentials in coordinate space have the following form G00 xy(R) = − 1 kBT Q0 x(▽)Q0 y(−▽) 1 ε0r exp ( − κ0√ ε0 r ) , (19) G01 xy(r) = − 1 kBT Q0 x(▽)Q1 y(−▽) 1 ε0ε1r κ2 0 ε0 ( κ2 1 ε1 − κ2 0 ε0 )−1 × [ exp ( − κ0√ ε0 r ) − κ2 1 ε0 κ2 0ε1 exp ( − κ1√ ε1 r )] , (20) Gc,11 xy (r) = − 1 kT Q1 x(▽)Q1 y(−▽) 1 ε1r exp ( − κ1√ ε1 r ) , (21) G12 xy(r) = 1 kT Q1 x(▽)Q1 y(−▽) 1 ε0ε21r (ε0−1) ( 1−1 2 κ1√ ε1 r ) exp ( − κ1√ ε1 r ) + 1 kT Q1 x(▽)Q1 y(−▽) 1 ε0ε21r κ4 0 ε2 0 ( κ2 0 ε0 −κ2 1 ε1 )−2 × [ exp ( − κ0√ ε0 r ) − ( 1− ( 1−κ2 1ε0 κ2 0 ǫ1 ) κ1√ ε1 r 2 ) exp ( − κ1√ ε1 r )] . (22) The results obtained for ion-ion screening potential coincide with the result [8] only for the case ε0 = 1. In order to understand the reason of such difference we consider ionic mean force potentials at the infinite dilution of ions which play the role of interionic potentials for considering the system in the McMillan-Mayer level of a description [11]. At the infinite dilution of ions from expressions (19)–(23) we 270 The screening potentials in disordered matrices have W 00 ab (r) = e2z0az 0 b 1 ε0r , W 01 ab (r) = e2z0ez 1 b 1 ε0ε1r , W c,11 ab (r) = e2z1az 1 b 1 ε1r , W 12 ab (r) = −e2z1az 1 b ε0 − 1 ε0ε21 1√ r . (23) At the same time for the model used in [8] W 00 ab (r) = e2z0az 0 b ε0r , W 01 ab = e2z0az 1 b 1 ε1r , W c,11 ab (r) = e2z1az 1 b ε1r , W 12 ab (r) = 0. (24) We can see that both models coincide only for the case ε0 = 1. The principal difference of the model (23) compared to (24) is the presence of the blocked part W 12 ab (r) in interionic potentials which describes the interactions through the dielec- tric matrix. The expression (23) also corrects fluid-matrix interionic interactions. We should note that interionic interactions have got Coulomb form with effective dielectric constant εef = ε1 ε1ε0 ε0(ε1 − 1) + 1 . (25) Since ε1ε0 > ε0(ε1 − 1) + 1, εef > ε1. In particular εef = ε1 for ε0 = 1 and εef = ε0 for ε1 = 1. Nevertheless, according to the scheme of describing the effects of quenched disorder on the fluid properties we should separate the interionic potential into connected and blocked parts W 11 ab (r) = W c,11 ab (r) +W b,11 ab (r). (26) It is not difficult to show that the ROZ equations (2)–(5) with approximations (10) for the model (23) lead to the interionic screening potentials in the form (19)– (22). The analysis of the result (19)–(22) shows that as for the usual ion-dipole case [11–12] resulting from ionic screening, all electrostatic interactions (ion-ion, ion- dipole and dipole-dipole) decay exponentially. As in [8] connected and blocked parts of the fluid-fluid screening potentials have opposite signs and different asymptotics. The connected part decay as 1 r exp ( − κα√ εα r ) , the blocked part has more long-range asymptotic exp ( − κ1√ ε1 r ) . Hence, the screening potentials G11 xy(r) can change their signs for intermediate distances. Such interparticle ordering was observed in [8–10] for ionic systems and we see that resulting from ionic screening the similar ordering is possible for dipolar molecules as well. References 1. Given J.A., Stell G. // J. Chem. Phys., 1992, vol. 97, p. 4573. 2. Given J.A., Stell G. // Physica A, 1994, vol. 209, p. 495. 3. Lomba E., Given J.A., Stell G., Weis J.J., Levesque D. // Phys. Rev. E, 1993, vol. 48, p. 233. 271 M.F.Holovko, Z.V.Polishchuk 4. Vega C., Kaminsky R.D., Monson P.A. // J. Chem. Phys., 1993, vol. 99, p. 3003. 5. Kierlik E., Rosinberg M.L., Tarjus G., Monson P.A. // J. Chem. Phys., 1997, vol. 106, p. 264. 6. Trokhymchuk A.D., Pizio O., Holovko M.F., Sokolowski S. // J. Chem. Phys., 1996, vol. 100, p. 17004. 7. Trokhymchuk A.D., Pizio O., Holovko M.F., Sokolowski S. // J. Chem. Phys., 1997, vol. 106, p. 220. 8. Hribar B., Pizio O., Trokhymchuk A., Vlachy V. // J. Chem. Phys., 1997, vol. 107, p. 6335. 9. Hribar B., Pizio O., Trokhymchuk A., Vlachy V. // J. Chem. Phys., 1998, vol. 109, p. 2480. 10. Bratko D., Chakraborty A.K. // J. Chem. Phys., 1996, vol. 104, p. 7700. 11. Yukhnovsky I.R., Holovko M.F. The Statistical Theory of the Classical Equilibrium Systems. Kiev, Naukova Dumka, 1980 (in Russian). 12. Golovko M.F., Yukhnovsky I.R. In: The Chemical Physics of Solvation. Amsterdam, Elsevier, 1985, vol. A, p. 207–262. Екрановані потенціали для іонно-дипольної системи, адсорбованої на іонно-дипольних невпорядкованих матрицях М.Ф.Головко, З.В.Поліщук Інститут фізики конденсованих систем НАН Укpаїни, 290011 Львів, вул. Свєнціцького, 1 Отримано 4 вересня 1998 р. Розглядається метод репліки для рівнянь Орнштейна-Церніке для іонно-молекулярної рідини, адсорбованої в невпорядкованій іонно- молекулярній матриці. Отримано явні вирази для екранованих по- тенціалів для іонно-дипольного випадку. Показано, що флюїд-флю- їд міжіонний потенціал розкладається на зв’язуючу і блоковану частини. Ключові слова: метод репліки для рівнянь Орнштейна-Церніке, екрановані потенціали, пористе середовище, іонно-молекулярна система PACS: 61.20, 05.20 272