Non-Markovian renormalization of kinetic coefficients for drift wave turbulence

Statistical theory of non-Markovian effects in turbulent transport is applied to the description of plasma turbulence in a magnetoactive plasma in the drift-kinetic approximation. Renormalized transition probability is calculated with regard to non-Markovian effects and equations for the relevant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Condensed Matter Physics
Datum:2001
Hauptverfasser: Zagorodny, A., Weiland, J.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут фізики конденсованих систем НАН України 2001
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/120518
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Non-Markovian renormalization of kinetic coefficients for drift wave turbulence / A. Zagorodny, J. Weiland // Condensed Matter Physics. — 2001. — Т. 4, № 4(28). — С. 603-609. — Бібліогр.: 6 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-120518
record_format dspace
spelling Zagorodny, A.
Weiland, J.
2017-06-12T09:20:23Z
2017-06-12T09:20:23Z
2001
Non-Markovian renormalization of kinetic coefficients for drift wave turbulence / A. Zagorodny, J. Weiland // Condensed Matter Physics. — 2001. — Т. 4, № 4(28). — С. 603-609. — Бібліогр.: 6 назв. — англ.
1607-324X
PACS: 05.40.+j, 52.35.Ra, 25.65.Ff
DOI:10.5488/CMP.4.4.603
https://nasplib.isofts.kiev.ua/handle/123456789/120518
Statistical theory of non-Markovian effects in turbulent transport is applied to the description of plasma turbulence in a magnetoactive plasma in the drift-kinetic approximation. Renormalized transition probability is calculated with regard to non-Markovian effects and equations for the relevant kinetic coefficients are derived. It is shown that memory effects can be important for the description of transport under saturated turbulence.
Статистична теорія немарковських ефектів у процесах турбулентного перенесення застосована до опису насичення плазмової турбулентності плазми в зовнішньому магнітному полі. Розраховано перенормовану ймовірність переходу з урахуванням немарковських ефектів і сформульовано рівняння для перенормованих кінетичних коефіцієнтів. Показано, що ефекти пам’яті можуть бути суттєвими при описі насичення турбулентності.
en
Інститут фізики конденсованих систем НАН України
Condensed Matter Physics
Non-Markovian renormalization of kinetic coefficients for drift wave turbulence
Немарковське перенормування кінетичних коефіцієнтів для дрейфової турбулентності
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Non-Markovian renormalization of kinetic coefficients for drift wave turbulence
spellingShingle Non-Markovian renormalization of kinetic coefficients for drift wave turbulence
Zagorodny, A.
Weiland, J.
title_short Non-Markovian renormalization of kinetic coefficients for drift wave turbulence
title_full Non-Markovian renormalization of kinetic coefficients for drift wave turbulence
title_fullStr Non-Markovian renormalization of kinetic coefficients for drift wave turbulence
title_full_unstemmed Non-Markovian renormalization of kinetic coefficients for drift wave turbulence
title_sort non-markovian renormalization of kinetic coefficients for drift wave turbulence
author Zagorodny, A.
Weiland, J.
author_facet Zagorodny, A.
Weiland, J.
publishDate 2001
language English
container_title Condensed Matter Physics
publisher Інститут фізики конденсованих систем НАН України
format Article
title_alt Немарковське перенормування кінетичних коефіцієнтів для дрейфової турбулентності
description Statistical theory of non-Markovian effects in turbulent transport is applied to the description of plasma turbulence in a magnetoactive plasma in the drift-kinetic approximation. Renormalized transition probability is calculated with regard to non-Markovian effects and equations for the relevant kinetic coefficients are derived. It is shown that memory effects can be important for the description of transport under saturated turbulence. Статистична теорія немарковських ефектів у процесах турбулентного перенесення застосована до опису насичення плазмової турбулентності плазми в зовнішньому магнітному полі. Розраховано перенормовану ймовірність переходу з урахуванням немарковських ефектів і сформульовано рівняння для перенормованих кінетичних коефіцієнтів. Показано, що ефекти пам’яті можуть бути суттєвими при описі насичення турбулентності.
issn 1607-324X
url https://nasplib.isofts.kiev.ua/handle/123456789/120518
citation_txt Non-Markovian renormalization of kinetic coefficients for drift wave turbulence / A. Zagorodny, J. Weiland // Condensed Matter Physics. — 2001. — Т. 4, № 4(28). — С. 603-609. — Бібліогр.: 6 назв. — англ.
work_keys_str_mv AT zagorodnya nonmarkovianrenormalizationofkineticcoefficientsfordriftwaveturbulence
AT weilandj nonmarkovianrenormalizationofkineticcoefficientsfordriftwaveturbulence
AT zagorodnya nemarkovsʹkeperenormuvannâkínetičnihkoefícíêntívdlâdreifovoíturbulentností
AT weilandj nemarkovsʹkeperenormuvannâkínetičnihkoefícíêntívdlâdreifovoíturbulentností
first_indexed 2025-11-26T00:10:46Z
last_indexed 2025-11-26T00:10:46Z
_version_ 1850595952463708160
fulltext Condensed Matter Physics, 2001, Vol. 4, No. 4(28), pp. 603–609 Non-Markovian renormalization of kinetic coefficients for drift wave turbulence A.Zagorodny 1 , J.Weiland 2 1 Bogolyubov Institute for Theoretical Physics, 03143 Kiev 143, Ukraine 2 Institute for Electromagnetics, Chalmers University of Technology, S-41296 Göteborg, Sweden Received August 29, 2001 Statistical theory of non-Markovian effects in turbulent transport is applied to the description of plasma turbulence in a magnetoactive plasma in the drift-kinetic approximation. Renormalized transition probability is calculated with regard to non-Markovian effects and equations for the relevant kinetic coefficients are derived. It is shown that memory effects can be important for the description of transport under saturated turbulence. Key words: plasma turbulence, drift-kinetic approximation, non-Markovian effects PACS: 05.40.+j, 52.35.Ra, 25.65.Ff 1. Introduction In [1,2] we proposed statistical theory of turbulent transport giving the non- Markovian version of the Dupree-Weinstock renormalization [3,4]. In the present paper the transition probability approach is used to introduce non-Markovian gener- alization of drift kinetic equations with regard to turbulent collisions. Derived equa- tions include collision terms describing the transverse diffusion in the real space and longitudinal diffusion in the velocity space. The main feature of the non-Markovian description is the time-nonlocality of the collision terms, which leads to a frequen- cy dependence of transport kinetic coefficients the real part of which describes the modification of the growthrate while the imaginary part is responsible for coherent wave interaction, in particular, for nonlinear frequency shift. The proposed approach makes it possible to calculate the renormalized transi- tion probability taking into account the influence of turbulent fields on the particle trajectories. It is shown that non-Markovian effects could be important for turbu- lence saturation. In the Markovian limit the Dupree-Tetreault renormalization [5] is reproduced. c© A.Zagorodny, J.Weiland 603 A.Zagorodny, J.Weiland 2. Drift kinetic equation with turbulent collision term We start from the equation for the microscopic phase density of guiding centers N(X, t) = N ∑ i=1 δ(X −Xi(t)), X = (r, v‖) (1) which in the drift approximation is given by { ∂ ∂t + (vg + vE) ∂ ∂r⊥ + v‖ ∂ ∂r‖ + e m E‖ ∂ ∂v‖ } N(X, t) = 0. (2) Here vE = ec B0 [E⊥ · e‖], E = −gradΦ is the microscopic electric field, vg is the gravitation drift velocity, the other notation is conventional. The kinetic equation for the distribution function f(X, t) ≡ 〈N(X, t)〉 can be obtained by statistical averaging of equation (2) L̂0f(X, t) ≡ { ∂ ∂t + (vg + 〈vE〉) ∂ ∂r⊥ + v‖ ∂ ∂r‖ + e m 〈E‖〉 ∂ ∂v‖ } f(X, t) = I, (3) where I = I⊥ + I‖ , I‖ = − e m ∂ ∂v‖ 〈δE‖δN〉, I⊥ = − ∂ ∂r⊥ 〈δvEδN〉. (4) The equation for fluctuations reduces then to { L̂0 + e m δE‖(r, t) ∂ ∂v‖ } δN(X, t) = −δvE(r, t) ∂f(X, t) ∂r⊥ − e m δE‖(r, t) ∂f(X, t) ∂v‖ . (5) The formal solution of equation (5) is given by δN(X, T ) = δN (0)(X, t) − t ∫ 0 dt′ ∫ dX ′Wm(X,X ′; t, t′)  δvE(r ′, t′) ∂f(X ′, t′) ∂r′⊥ + e m δE‖(r ′, t′) ∂f(X ′, t′) ∂v′‖   , (6) where δN (0)(X, t) is the fluctuation of the microscopic phase density with no self- consistent interaction generated by the general solution of homogeneous equation, i.e. { L̂(0) + e m δE‖(r, t) ∂ ∂v‖ } δN0(X, t) = 0, (7) Wm(X,X ′; t, t′) is the “microscopic” probability of particle transition from X ′ to X during the time interval t− t′. Obviously the equation for such probability is { L̂(0) + e m δE‖(r, t) ∂ ∂v‖ } Wm(X,X ′; t, t′) = 0 (8) 604 Non-Markovian renormalization of kinetic coefficients. . . with the initial condition Wm(X,X ′; t, t′) = δ(X−X ′). The solution of equation (8) is Wm(X,X ′; t, t′) = δ (X −X ′ −∆X(X ′, t′; t)) , (9) where ∆X(X ′, t′; t) is the guiding center displacement in the course of particle mo- tion in the microfield ∆r‖(X ′, t′; t) = v‖(t ′)(t− t′) + e m t ∫ t′ ds s ∫ t′ ds′ E‖ (r(s ′), s′) , ∆r⊥(X ′, t′; t) = vg(t− t′) + t ∫ t′ dsvE (r(s), s) , ∆v‖(X ′, t′; t) = e m t ∫ t′ dsE‖ (r(s), s) . We now assume that the distribution function slowly changes within the spatial and velocity fluctuation scales. Then, combining equations (4), (6) and (8) it is possible to introduce the following kinetic equation with the non-Markovian collision term L̂(0)f(X, t) = t ∫ 0 dt′ { ∂ ∂v‖ [ v‖ ( β(t, t′, v‖) + 2Uf(t, t′, v‖) ∂ ∂r⊥ ) + ∂ ∂v‖ d(t, t′, v‖) ] − ( U P (t, t′, v‖) +U f(t, t′, v‖) ) ∂ ∂r⊥ +Dij(t, t ′, v‖) ∂2 ∂r⊥i∂r⊥j } f(X, t′), (10) where β(t, t′, v‖) = β1(t, t ′, v‖) + β2(t, t ′, v‖), β1(t, t ′, v‖) = −i 4πe2n m ∫ dk (2π)3 ∫ dω 2π ki〈Wmkω(v‖)〉 k2ε(k, ω) δ(t− t′) + c.c., β2(t, t ′, v‖) = − 1 v‖ ∂ ∂v‖ ( e m )2 ∫ dk (2π)3 k2 ‖〈δΦ(t)δΦ(t ′)〉k〈Wmk(v‖, t ′; t)〉, UP i (t, t ′v‖) = −i 4πe2 mΩ eijz ∫ dk (2π)3 ∫ dω 2π k⊥i〈Wmkω(v‖)〉 k2ε(k, ω) δ(t− t′) + c.c., U f i (t, t ′, v‖) = eijz ( e m )2 ∫ dk (2π)3 k⊥jk‖ Ωv‖ 〈δΦ(t)δΦ(t′)〉k〈Wmk(v‖, t ′; t)〉, d(t, t′; v‖) = ( e m )2 ∫ dk (2π)3 k2 ‖〈δΦ(t)δΦ(t ′)〉k〈Wmk(v‖, t ′; t)〉, Dij(t, t ′; v‖) = = ( e m )2 ∫ dk (2π)3 k2 ⊥ Ω2 ( δ⊥ij − k⊥ik⊥j k2 ⊥ ) 〈δΦ(t)δΦ(t′)〉k〈Wmk(v‖, t ′; t)〉 (11) 605 A.Zagorodny, J.Weiland and 〈Wmk(v‖, t, t ′)〉 = ∫ d∆Xe−ik∆r〈W (X +∆X,X ; t, t′)〉, 〈Wmkω(v‖)〉 = ∞ ∫ 0 dτeiωτ 〈Wmk ( v‖; t+ τ, t ) 〉, ε(k, ω) = 1− 4πe2 m ∫ dv‖〈Wmkω(v‖)〉 { eijz k⊥j Ω ∂f(X, t) ∂r⊥i + k‖ ∂f(X, t) ∂v‖ } . (12) The kinetic coefficents given by equation (11) describe the influence of different physical mechanisms on averaged (kinetic) particle dynamics. Namely, β 1(t, t ′; v‖) and β2(t, t ′; v‖) describe the polarization friction and friction due to the particle scattering by turbulent fields, respectively, U p(t, t′; v‖) and Uf (t, t′; v‖) are associat- ed with the polarization drift and zonal flows, d(t, t ′; v‖) and D(t, t′; v‖) characterize the velocity diffusion along the external magnetic field and the transverse diffusion in the real space. Thus, we see that in the case under consideration the collision term in equation (10) includes diffusion in the velocity space in longitudinal direc- tion, diffusion in the real space in the transverse directions, drift generated by the polarization forces and drift due to the field fluctuations. All kinetic coefficients are expressed in terms of fluctuation potential correlation functions and averaged transi- tion probability which describes particle transitions taking into account fluctuation (in particular turbulent) field influence on particle trajectories. 3. Renormalized transition probability and dielectric res ponse function Since the equation for “microscopic” transition probability (equation (8)) coin- cides with the equation for microscopic phase density (equation (2)), it is easy to derive the equation for averaged transition probability given by L̂0〈Wm(X,X ′; t, t′)〉 = = t ∫ t′ dt′′ { ∂ ∂v‖ [ v‖ ( β(t, t′′, v‖) + 2Uf(t, t′′, v‖) + ∂ ∂r⊥ ) ∂ ∂v‖ d(t, t′; v‖) ] − ( U P (t, t′, v‖) +U f (t, t′′; v‖) ) ∂ ∂r⊥ +Dij(t, t ′′; v‖) ∂2 ∂r⊥i∂r⊥j } × 〈Wm(X,X ′; t′′, t′)〉. (13) This equation, as well as the kinetic equation (10) are non-Markovian. In various particular cases solutions of equation (13) can be found explicitly. The examples of solutions of the equation describing non-Markovian diffusion in the velocity space are given in [1,2]. We generalize these results to the case under consideration, i.e. to equation (13). However, in order to illustrate the basic points of the approach, 606 Non-Markovian renormalization of kinetic coefficients. . . we do not reproduce here the general solution but restrict ourselves to the case when the dynamical friction, polarization and fluctuation drift, could be neglected (β = 0, UP = U f = 0). This approximation is valid in the case of wide k-spectrum of turbulence and low level of turbulent fluctuations. In this case equation (13) reduces to L̂0〈Wm(X,X ′; t, t′)〉 = = t ∫ t′ dt′′  d(t, t′′, v‖) ∂2 ∂v2‖ +Dij(t, t ′′; v‖) ∂2 ∂r⊥i∂r⊥j   〈Wm(X,X ′; t′′, t′)〉. (14) It follows from the solution of this equation that in the case of stationary system 〈Wmkω(v‖)〉 = = ∞ ∫ 0 dτ exp [ i ( ω − k‖v‖ − k⊥vg + ik⊥ik⊥jDijω(v‖) ) τ + ik2 ‖dω(v‖) 3 τ 3 ] , (15) where dω(v‖) = ∞ ∫ 0 dτeiωτd ( t+ τ, t; v‖ ) , Dijω(v‖) = ∞ ∫ 0 dτeiωτDij ( t + τ, t; v‖ ) . In the Markovian limit these quantities should be replaced by their zero-frequen- cy values. Equation (15) generalizes the renormalizations of the transition probabil- ity for guiding centers due to the diffusion in the real and velocity spaces to the case of non-Markovian diffusion. The renormalized dielectric response function has the form ε(k, ω) = 1− i 4πe2 m ∫ dv‖ ∞ ∫ 0 dτ × exp [ i ( ω − k‖v‖ − k⊥vg + ik⊥ik⊥jDijω(v‖) ) τ + k2 ‖dω(v‖) 3 τ 3 ] × { eijz k⊥j Ω ∂f(X) ∂ri + k‖ ∂f(X) ∂v‖ } . (16) Solutions of the equation ε(k, ω) = 0 define the renormalized spectra of eigenexci- tations. 4. Non-Markovian transport and turbulence saturation Substituting equation (15) into equations (11) it is possible to formulate equa- tions for renormalized kinetic coefficients. For examples, Dijω(v‖) = ( e m )2 ∫ dk (2π)3 ∫ dω′ 2π k2 ⊥ Ω2 ( δ⊥ij − k⊥ik⊥j k2 ⊥ ) 〈δΦ2〉kω′ (17) 607 A.Zagorodny, J.Weiland × ∞ ∫ 0 dτ exp [ i ( ω − ω′ + k‖v‖ + k⊥vg + ik⊥ik⊥jDijω−ω′(v‖) ) τ − k2 ‖dω−ω′(v‖) 3 τ 3 ] . Within the approximation ∞ ∫ 0 dτe−ατ3+iωτ ≃ i ω + iα1/3 equation (17) reduces to Dijω(v‖) = ( e m )2 ∫ dk (2π)3 ∫ dω′ 2π k2 ⊥ Ω2 ( δ⊥ij − k⊥ik⊥j k2 ⊥ ) 〈δΦ2〉kω′ × i ω − ω′ + k‖v‖ + ik⊥ik⊥jDijω−ω′(v‖) + i 3 √ k2 ‖dω−ω′(v‖) 3 . (18) At dω(v‖) = 0, k‖v‖ = 0 equation (18) gives the non-Markovian generalization of the result by Dupree-Tetreault [5] Dijω(v‖) = ( e m )2 ∫ dk (2π)3 ∫ dω′ 2π k2 ⊥ Ω2 ( δ⊥ij − k⊥ik⊥j k2 ⊥ ) i〈δΦ2〉kω′ ω − ω′ + ik⊥ik⊥jDijω−ω′ . (19) In the case of one-mode turbulent spectrum equation (19) gives k⊥ik⊥jDijω = 1 2 ∑ β=±1 k4 ⊥ Ω2 ∆k k⊥ i ( e m )2 δΦ2 ω − βωk + ik⊥ik⊥jDijω−βωk , (20) where k⊥ and ∆k are the wave number related to the maximum growthrate and the turbulent spectrum width, ωk is the eigenfrequency, δΦ2 is the turbulent spectrum amplitude. As follows from equation (20) low-frequency value of the diffusion coefficient is given by k⊥ik⊥jDij = ( e m )2 k2 ⊥ Ω2 ∆k k⊥ δΦ2γk ω2 k + γ2 k ≃ γ3 k ω2 k + γ2 k , (21) where γk is the instability growthrate. When deriving (21) we assume that in the saturated state renormalized growthrate is equal to zero, i.e. k⊥ik⊥jDωk = γk. The estimate (21) is in agreement with the results of mode-coupling simulations and improved mixing length transport theory (see, for instance [6]). 5. Summary and conclusions The microscopic derivation of the drift-kinetic equation with a non-Markovian collision term is done for the case of turbulent plasmas in an external magnetic 608 Non-Markovian renormalization of kinetic coefficients. . . field. Renormalized non-Markovian kinetic coefficients are expressed in terms of the transition probability calculated with regard to the time-nonlocal diffusion in the real and velocity spaces. In the approximation of the time-local diffusion the results of the quasilinear theory, as well as the Dupree-Tetreault renormalization are reproduced. It is shown that memory effects are important for the estimates of the diffusion coefficients for saturated turbulence. References 1. Zagorodny A., Weiland J. // Condens. Matter Phys., 1998, vol. 1, p. 835. 2. Zagorodny A., Weiland J. // Phys. Plasmas, 1999, vol. 5, p. 2359. 3. Dupree T. H. // Phys. Fluids, 1966, vol. 9, p. 1773. 4. Weinstock J. // Phys. Fluids, 1969, vol. 12, p. 1045. 5. Dupree T. H., Tetreault D. // Phys. Fluids, 1978, vol. 21, p. 425 6. Connor J.W., Pogutse O.P. // Plasma Phys. Control. Fusion, 2001, vol. 43, p. 155. Немарковське перенормування кінетичних коефіцієнтів для дрейфової турбулентності А.Загородній 1 , Я.Вейланд 2 1 Інститут теоретичної фізики ім. М.М. Боголюбова НАН України, 03143 Київ, вул. Метрологічна, 14б 2 Інститут електромагнетизму, Чалмерський технологічний університет, S-41296 Ґетеборґ, Швеція Отримано 29 серпня 2001 р. Статистична теорія немарковських ефектів у процесах турбулентно- го перенесення застосована до опису насичення плазмової турбу- лентності плазми в зовнішньому магнітному полі. Розраховано пе- ренормовану ймовірність переходу з урахуванням немарковських ефектів і сформульовано рівняння для перенормованих кінетичних коефіцієнтів. Показано, що ефекти пам’яті можуть бути суттєвими при описі насичення турбулентності. Ключові слова: турбулентність плазми, дрейфове кінетичне наближення, немарковські ефекти PACS: 05.40.+j, 52.35.Ra, 25.65.Ff 609 610