Multi-component mixture of dipolar hard spheres with surface adhesion

Solution of the mean spherical approximation for multi-component model of dipolar hard spheres with surface adhesion is obtained using factorization technique pioneered by Wertheim and Baxter. For the sake of illustration numerical calculations for the dielectric constant of the two-component ver...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Condensed Matter Physics
Datum:2003
1. Verfasser: Protsykevich, I.A.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут фізики конденсованих систем НАН України 2003
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/120764
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Multi-component mixture of dipolar hard spheres with surface adhesion / I.A. Protsykevich // Condensed Matter Physics. — 2003. — Т. 6, № 4(36). — С. 629-636. — Бібліогр.: 21 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-120764
record_format dspace
spelling Protsykevich, I.A.
2017-06-12T19:15:13Z
2017-06-12T19:15:13Z
2003
Multi-component mixture of dipolar hard spheres with surface adhesion / I.A. Protsykevich // Condensed Matter Physics. — 2003. — Т. 6, № 4(36). — С. 629-636. — Бібліогр.: 21 назв. — англ.
1607-324X
PACS: 82.70.Dd, 61.20.-p, 61.20.Gy, 61.20.Ne, 61.20.Qg, 02.30.Rz
DOI:10.5488/CMP.6.4.629
https://nasplib.isofts.kiev.ua/handle/123456789/120764
Solution of the mean spherical approximation for multi-component model of dipolar hard spheres with surface adhesion is obtained using factorization technique pioneered by Wertheim and Baxter. For the sake of illustration numerical calculations for the dielectric constant of the two-component version of the model are carried out.
На основі методу факторизації, започаткованого Вертхаймом та Бакстером, отриманий аналітичний розв’язок середньосферичного наближення для багатокомпонентної моделі дипольних твердих сфер з поверхневою липкістю. З метою ілюстрації виконані чисельні розрахунки діелектричної сталої двокомпонентного варіанту моделі.
en
Інститут фізики конденсованих систем НАН України
Condensed Matter Physics
Multi-component mixture of dipolar hard spheres with surface adhesion
Багатокомпонентна суміш дипольних твердих сфер з поверхневим прилипанням
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Multi-component mixture of dipolar hard spheres with surface adhesion
spellingShingle Multi-component mixture of dipolar hard spheres with surface adhesion
Protsykevich, I.A.
title_short Multi-component mixture of dipolar hard spheres with surface adhesion
title_full Multi-component mixture of dipolar hard spheres with surface adhesion
title_fullStr Multi-component mixture of dipolar hard spheres with surface adhesion
title_full_unstemmed Multi-component mixture of dipolar hard spheres with surface adhesion
title_sort multi-component mixture of dipolar hard spheres with surface adhesion
author Protsykevich, I.A.
author_facet Protsykevich, I.A.
publishDate 2003
language English
container_title Condensed Matter Physics
publisher Інститут фізики конденсованих систем НАН України
format Article
title_alt Багатокомпонентна суміш дипольних твердих сфер з поверхневим прилипанням
description Solution of the mean spherical approximation for multi-component model of dipolar hard spheres with surface adhesion is obtained using factorization technique pioneered by Wertheim and Baxter. For the sake of illustration numerical calculations for the dielectric constant of the two-component version of the model are carried out. На основі методу факторизації, започаткованого Вертхаймом та Бакстером, отриманий аналітичний розв’язок середньосферичного наближення для багатокомпонентної моделі дипольних твердих сфер з поверхневою липкістю. З метою ілюстрації виконані чисельні розрахунки діелектричної сталої двокомпонентного варіанту моделі.
issn 1607-324X
url https://nasplib.isofts.kiev.ua/handle/123456789/120764
citation_txt Multi-component mixture of dipolar hard spheres with surface adhesion / I.A. Protsykevich // Condensed Matter Physics. — 2003. — Т. 6, № 4(36). — С. 629-636. — Бібліогр.: 21 назв. — англ.
work_keys_str_mv AT protsykevichia multicomponentmixtureofdipolarhardsphereswithsurfaceadhesion
AT protsykevichia bagatokomponentnasumíšdipolʹnihtverdihsferzpoverhnevimprilipannâm
first_indexed 2025-11-27T07:04:00Z
last_indexed 2025-11-27T07:04:00Z
_version_ 1850802904459378688
fulltext Condensed Matter Physics, 2003, Vol. 6, No. 4(36), pp. 629–636 Multi-component mixture of dipolar hard spheres with surface adhesion∗ I.A.Protsykevich Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii Str., 79011 Lviv, Ukraine Received September 8, 2003 Solution of the mean spherical approximation for multi-component model of dipolar hard spheres with surface adhesion is obtained using factorization technique pioneered by Wertheim and Baxter. For the sake of illustration numerical calculations for the dielectric constant of the two-component ver- sion of the model are carried out. Key words: mean spherical approximation, dipolar hard spheres, adhesion, dielectric constant PACS: 82.70.Dd, 61.20.-p, 61.20.Gy, 61.20.Ne, 61.20.Qg, 02.30.Rz 1. Introduction Mean spherical approximation (MSA) [1] occupies a special place among the liquid state integral equation theories [2–4] due to the availability of the analytical solution of the corresponding Ornstein-Zernike (OZ) equation for a number of simple albeit nontrivial models (see, for example [2–14]). In the present study we propose the method, which can be used to describe the properties of the fluid of multicomponent dipolar hard spheres with surface adhesion. It is based on the analytical solution of the corresponding version of the MSA with the surface adhesion accounted for following Baxter [15]. In the relevant publications of Blum and coworkers multi-component sticky hard-sphere ion-dipole mixture with orientationally dependent stickiness for dipoles of the same size [16] and one-component hard-sphere system with anisotropic adhesion of arbitrary symmetry and electric multipoles [17] have been studied. 2. The model We consider M -component adhesive hard-sphere fluid with the number density of each species s ρs = Ns/V , hard-sphere diameter σs and dipolar moment ps. ∗This paper is dedicated to Professor Myroslav Holovko on the occasion of his 60th birthday. c© I.A.Protsykevich 629 I.A.Protsykevich In addition to hard-sphere and dipolar interaction there is the so-called “sticky” interaction, which is characterized by the adhesion parameter Λst(Ω12), where Ω12 = (Ω1, Ω2), Ω1 is a set of Euler angles that give the orientation of the molecule 1. For the model at hand MSA consists of the following OZ equation and closure conditions hst(X12) = cst(X12) + M ∑ u=1 ρu ∫ dX3hsu(X13)cut(X32), (1) hst(X12) = −1 + Λst(Ω12)δ(r − σst), r12 < σst = 1 2 (σs + σt), (2) cst(X12) = −βUst(X12) = −βpspt { s1s2 |r12|3 − 3s1r12r12s2r12 |r12|5 } , r12 > σst, (3) where hst(X12) = gst(X12) − 1 is the pair correlation function, gst(X12) is the pair distribution function, cst(X12) is the direct correlation function, Ust(X12) is the elec- trostatic pair potential, r12 is the distance between the particles, X12 = (X1, X2), X1 = (~r1, Ω1), β = 1/kbT , ~s1 = ~r1/|~r1| is the unit vector and δ(r) is the Dirac delta-function. Solution of the present MSA problem is based on the Wiener-Hopf factorization technique developed by Wertheim [18] and Baxter [19,20]. In order to consistently account for the orientation dependencies, the technique developed by Blum and co-workers [6–8] is utilized. According to this method all orientation dependent functions are presented in orientational-invariant form fst(X12) = ∑ mnl fmnl st (r12)Φ mnl 00 (Ω1, Ω2, Ωr12 ), (4) where the linear symmetry of the dipoles is accounted for and Ωr12 is a set of Euler angles, which defined the orientation of the vector ~r12. This vector connects the centers of masses of the particles 1 and 2. Φmnl 00 (Ω1, Ω2, Ωr) = ((2m + 1)(2n + 1))1/2 ∑ µνλ ( m n l µ ν λ ) × Dm 0µ(Ω1)D n 0ν(Ω2)D l 0λ(Ωr), fmnl st (r12) = (2l + 1) ((2m + 1)(2n + 1))1/2 ∑ µνλ ( m n l µ ν λ ) × ∫ dΩ1dΩ2dΩr12 D∗m 0µ (Ω1)D ∗n 0ν (Ω2)D ∗l 0λ(Ωr12 )fst(X12). (5) Here a standard notation is used for the 3-j Wigner symbols and for generalized spherical functions. In terms of the rotational invariant expansion, the coefficients closure conditions (2) and (3) are as follows: h000 st (r) = −1 + Λ000 st δ(r − σ− st), r < σst, (6) 630 Adhesive dipolar hard spheres h110 st (r) = Λ110 st δ(r − σ− st), r < σst, (7) h112 st (r) = Λ112 st δ(r − σ− st), r < σst, (8) c000 st (r) = 0, r > σst, (9) c110 st (r) = 0, r > σst, (10) c112 st (r) = (10/3) 1 2 βpsptr −3, r > σst. (11) Relations (6)–(8) impose dipole symmetry on the adhesion parameter. In terms of the rotational-invariants coefficients the set of the OZ equations (1) will have the form similar to that presented in [7] H̃mn st,χ(k) − C̃mn st,χ(k) = M ∑ u=1 1 ∑ l=0 (−1)χρuH̃ ml su,χ(k)C̃ ln ut,χ(k), (12) where F̃ mn st,χ(k) = 2 ∞ ∫ 0 dr cos(kr)Fmnl st (r), Fmn st,χ(r) = 2π(−1)χ ∑ l ( m n l χ −χ 0 ) ∞ ∫ r dt tPl ( r t ) fmnl st (t), F̃ mn st,χ(k) ≡ H̃mn st,χ(k) or C̃mn st,χ(k), Fmn st,χ(r) ≡ Jmn st,χ(r) or S̃mn st,χ(r), fmn st (r) ≡ hmn st (r) or cmn st (r) (13) for the model at hand the set of equations (12) will be reduced to the set of three independent sets of equations H̃00 st,0(k) − C̃00 st,0(k) = M ∑ u=1 ρuH̃ 00 su,0(k)C̃00 ut,0(k), H̃11 st,0(k) − C̃11 st,0(k) = M ∑ u=1 ρuH̃ 11 su,0(k)C̃11 ut,0(k), H̃11 st,1(k) − C̃11 st,1(k) = M ∑ u=1 ρuH̃ 11 su,1(k)C̃11 ut,1(k). (14) Closure conditions for the functions Jmn st,χ(r) and Smn st,χ(r) are as follows: Smn st,χ(r) = 0, mnχ = 000, 110, 111, r > σst, Jmn st,χ(r) = jmn,0 st,χ + jmn,2 st,χ r2, r < σst, j00,0 st,0 = b00,0 st,0 − πσ2 st, j00,2 st,0 = π, j11,0 st,0 = − 1 31/2 b110 st,0 − 1 301/2 b112 st,2, j11,2 st,0 = ( 3 10 )1/2 b112 st,2, j11,0 st,1 = − 1 31/2 b110 st,0 + 1 1201/2 b112 st,2, j11,2 st,1 = − ( 3 40 )1/2 b112 st,2, 631 I.A.Protsykevich bmnl st,p = 2π(σst) 1−pΛmnl st + 2π ∞ ∫ σ+ st drhmnl xy (r)r1−p. (15) 3. General solution All three sets of equations (14) are of the same form. Omitting the indices we have H̃st(k) − C̃st(k) = M ∑ u=1 ρuH̃su(k)C̃ut(k), (16) Jst(r) = j0 st + j2 str 2, r < σst, (17) Sst(r) = 0, r > σst, (18) where the function Jst(r) has a jump discontinuity at r = σst: Jst(σ + st) − Jst(σ − st) = jstep st , (19) H̃st(k) = 2 ∞ ∫ 0 dr cos(kr)Jst(r), (20) C̃st(k) = 2 ∞ ∫ 0 dr cos(kr)Sst(r). (21) Using matrix notation we have ( I + [ρ1/2] · [H̃(k)] · [ρ1/2] ) × ( I − [ρ1/2] · [C̃(k)] · [ρ1/2] ) = I, (22) where I is the unit matrix, the symbol “ · ” denotes matrix multiplication, square brackets denote matrices of the order M , ρ 1/2 st = δstρ 1/2, δst is the Kronecker delta. Using Wiener-Hopf factorization method we have I − [ρ1/2] · [C̃(k)] · [ρ1/2] = [Q̃(k)] · [Q̃(−k)]T , (23) [ I + [ρ1/2] · [H̃(k)] · [ρ1/2] ] · [Q̃(k)] = [ [Q̃(−k)]T ]−1 , (24) where the upper index T denotes matrix transpose. Wertheim-Baxter factorization correlation functions are of the following form [Q̃(k)]st = δst − (ρsρt) 1/2 σst ∫ λts drQst(r)e ikr, Qst(r) =          0, r < λts = (σt − σs)/2, ( 2π(ρsρt) 1/2 )−1 ∞ ∫ −∞ dk ( δst − Q̃st)k) ) e−ikr, λts < r < σst , 0, r > σst . (25) 632 Adhesive dipolar hard spheres After the inverse Fourier transform for the equations (23) and (24) we have Sst(r) = −Qst(r) + M ∑ u=1 ρu {σsu;σtu+r} ∫ {λus;λut+r} dtQsu(t)Qtu(t − r), (26) Jst(r) = Qst(r) + M ∑ u=1 ρu σut ∫ λtu dtJsu(|r − t|)Qut(t), (27) where the upper and lower integration limits are represented by the smallest and largest numbers in braces, respectively. Using the closure conditions (17) and taking into account the relation (19) from the equation (27) at r < σst we have Qst(r) = ast + (r − σst)bst + 1/2(r − σst)(r − λts)dst, ast = jstep st , bst = ( [ I − 1 6 [ρtσ 3 t j 2 st] ]−1 · [ σtj 2 st ] ) st , dst =  2 [ 0 0 −1 I − 1 6 [ρtσ 3 t j 2 st] ]−1 · [ 0 0 −1 j2 st ] + [ 0 0 −1 bst ] · [ 0 0 −1 ρsσsbst ] − 2 [ 1 6 −1 bst ] ·   [ 1 6 −1 ]−1 ρsast     st . (28) 4. Wertheim-Baxter factorization correlation function Using the results obtained in the previous section and taking into account the rotationally-invariant indices m, n and χ Wertheim-Baxter factorization correlation functions can be written as follows: Qmn st,χ(r) = amn st,χ + (r − σst)b mn st,χ + 1/2(r − σst)(r − λts)d mn st,χ , a00 st,0 = 2πσstΛ 000 st , bst,0 = π ∆ σt , dst,0 = 2π ∆ + π2 ∆2 ζ2σt − 2π ∆ M ∑ u=1 ρuσuaut,0 , a11 st,0 = − 2π 31/2 σstΛ 110 st + 4π 301/2 σstΛ 112 st , a11 st,1 = − 2π 31/2 σstΛ 110 st − 2π 301/2 σstΛ 112 st , (29) where ∆ = 1 − π/6ζ3; ζp = M ∑ u=1 ρu(σu) p . Coefficients of the Wertheim-Baxter factorization function b11 st,0 , d11 st,0 , b11 st,1 and d11 st,1 follow from the solution of the set of equations b11 st,0 = 1 1201/2 M ∑ u=1 ρuσ 3 ub 112 su,2b 11 ut,0 + 0.31/2σtb 112 st,2 , 633 I.A.Protsykevich d11 st,0 = 2 σt b11 st,0 + M ∑ u=1 ρuσub 11 su,0b 11 ut,0 − 2 M ∑ u=1 ρub 11 su,0a 11 ut,0 , b11 st,1 = − 1 4801/2 M ∑ u=1 ρuσ 3 ub 112 su,2b 11 ut,1 + 0.0751/2σtb 112 st,2 , d11 st,1 = 2 σt b11 st,1 + M ∑ u=1 ρuσub 11 su,1b 11 ut,1 − 2 M ∑ u=1 ρub 11 su,1a 11 ut,1 . (30) This set of equations have to be supplemented by the additional equation for the parameter b112 st,2. This equation can be obtained from the closure conditions for c112 st (r) at r > σst 4π 3 βpspt = −C̃11 st,0(k = 0) + C̃11 st,1(k = 0). (31) Introducing the quantities Kmn,p st = σst ∫ λts dr rpQmn st (r), (32) equation (31) can be written as follows 4π 3 βpspt = −K11,0 st,0 − K11,0 ts,0 + M ∑ u=1 ρuK 11,0 su,0K 11,0 tu,0 + K11,0 st,1 + K11,0 ts,1 − M ∑ u=1 ρuK 11,0 su,1K 11,0 tu,1 , (33) where K11,0 st,χ = σsa 11 st,χ − 1 2 σ2 sb 11 st,χ − 1 3 σ3 sd 11 st,χ . (34) Thus, we obtain a closed set of equations (30) and (33) for the coefficients of the Wertheim-Baxter factorization correlation function and for the dipole-dipole interaction parameter b112 st,2 . 5. Dielectric constant. Numerical calculations The expression for the dielectric constant of the dipolar mixture ε was obtained in [7,21]. For the model at hand we have ε − 1 ε + 2 = Tr ( [ [q1] · [q2] −1 − I ] · [ [q1] · [q2] −1 + 2I ]−1 ) , (35) where [q1] = ( I − [ρ1/2] · [K11,0 st,0 ] · [ρ1/2] ) × ( I − [ρ1/2] · [K11,0 st,0 ] · [ρ1/2] )T , [q2] = ( I − [ρ1/2] · [K11,0 st,1 ] · [ρ1/2] ) × ( I − [ρ1/2] · [K11,0 st,1 ] · [ρ1/2] )T . (36) 634 Adhesive dipolar hard spheres Table 1. Dielectric properties of the two-component dipolar hard-sphere fluid. Hard spheres of species 1 has a diameter σ1 = 1 and hard-spheres size of species 2 is σ2 = 21/3σ1. The reduced total density is ρ∗ = ρ1σ 3 1 +ρ2σ 3 2 = 0.8. The dipole moment of species 1 and 2 are such that when ρ2 = 0 (pure fluid 1) then y = 2.5 and when ρ1 = 0 (pure fluid 2) then y = 1.5, where y = 4π/9β ∑ s ρsp 2 s. Here Λmnl st is treated as a fitting parameter. EMSA EMC ESDHS X1 = ρ1/ρ y [6] [6] Λ110 st = 0, Λ112 11 = −0.14, Λ112 12 = −0.18, Λ112 22 = −0.24 0.0 1.5 11.5 13.65 13.66 0.3 1.7 13.4 17.4 17.5 0.8 2.2 19.1 26.0 26.2 1.0 2.5 23.5 37.2 36.9 To calculate the dielectric constant of the system, the solution of the set of equa- tions (30) and (33) has to be obtained. This is a set of highly nonlinear equations, which can be solved only using the numerical methods, for example using the New- ton’s method. To use this method it is important to have a sufficiently accurate initial guess for the unknowns of the problem. In our study we start from the two- component version of the model with hard spheres of the same size and dipolar moment. For such a model, the dipole-dipole interaction parameter b112 st,2 is the same for both species and can be obtained from the corresponding nonlinear equation. All the rest of the unknown coefficients can be easily obtained from b112 st,2. Gradually changing the ratio of the hard-sphere sizes and dipolar moments one can get solution of the set of equations (30) and (33) for the two-component system with arbitrary hard-sphere sizes and dipolar moments. For the sake of illustration in table 1 we present the dependance of the dielectric constant of the two-component mixture on the concentration of the first species X1 = ρ1/ξ0 with the value of the adhesion constant Λmnl st chosen so as to fit the corresponding MC values. Good agreement between MC and theoretical predictions in the whole range of concentrations with only one value for Λmnl st shows that the model at hand can be used to correlate the experimental data with the dielectric properties of multi-component polar fluids. References 1. Lebowitz J.L., Percus J.K. // Phys. Rev., 1966, vol. 144, p. 251. 2. Yukhnovski I.R., Holovko M.F. Statistical Theory of Classical Equilibrium Systems. Kyiv, Naukova Dumka, 1980. 3. Hansen J.-P., McDonald I.R. Theory of Simple Liquids. 2nd edition. New York, Aca- demic, 1986. 635 I.A.Protsykevich 4. Gray C.G., Gubbins K. Theory of Molecular Fluids. Vol. 1: Fundamentals. Oxford, Clarendon Press, 1984. 5. Kalyuzhnyi Y.V., Cummings P.T. Equations of State for Fluids and Fluid Mixtures. Elsevier, 2000. 6. Blum L., Toruella A.J. // J. Chem. Phys., 1972, vol. 56, No. 6, p. 303–310. 7. Blum L. // J. Chem. Phys., 1972, vol. 57, No. 5, p. 1862–1869. 8. Blum L. // J. Chem. Phys., 1973, vol. 58, No. 8, p. 3295–3303. 9. Blum L. // J. Stat. Phys., 1978, vol. 18, No. 5, p. 451–474. 10. Blum L., Wei D.Q. // J. Chem. Phys., 1987, vol. 87, No. 1, p. 555–565. 11. Wei D., Blum L. // J. Chem. Phys., 1987, vol. 87, No. 5, p. 2999–3007. 12. Golovko M.F., Protsykevich I.A. // Chem. Phys. Lett., 1987, vol. 142, No. 6, p. 463– 469. 13. Golovko M.F., Protsykevich I.A. // J. Stat. Phys., 1989, vol. 54, No. 3/4, p. 707–733. 14. Pizio O.O., Holovko M.F., Trokhymchuk A.D. // Acta Chemica Hungarica, 1988, vol. 125, p. 385–402. 15. Baxter R.J. // J. Chem. Phys., 1968, vol. 49, p. 2770. 16. Wei D., Blum L. // J. Chem. Phys., 1988, vol. 89, p. 1091–1101. 17. Blum L., Cummings P.T., Bratko D. // J. Chem. Phys., 1990, vol. 92, p. 3741–3747. 18. Wertheim M.S. // Phys. Rev. Lett., 1963, vol. 10, p. 321. 19. Baxter R.J. // Austral. J. Phys., 1968, vol. 21, No. 5, p. 563–569. 20. Baxter R.J. // J. Chem. Phys., 1970, No. 9. 21. Cummings P.T., Blum L. // J. Chem. Phys., 1986, vol. 85, No. 11, p. 6658–6667. Багатокомпонентна суміш дипольних твердих сфер з поверхневим прилипанням І.А.Процикевич Інститут фізики конденсованих систем НАН України, 79011 Львів, вул. Свєнціцького, 1 Отримано 8 вересня 2003 р. На основі методу факторизації, започаткованого Вертхаймом та Бакстером, отриманий аналітичний розв’язок середньосферично- го наближення для багатокомпонентної моделі дипольних твердих сфер з поверхневою липкістю. З метою ілюстрації виконані чисе- льні розрахунки діелектричної сталої двокомпонентного варіанту моделі. Ключові слова: середньосферичне наближення, дипольні тверді сфери, адгезія, діелектрична постійна PACS: 82.70.Dd, 61.20.-p, 61.20.Gy, 61.20.Ne, 61.20.Qg, 02.30.Rz 636