Monte Carlo simulation of phase equilibria in Ising fluids and their mixtures
The mean field theory for the pure Ising fluid was recently extended to binary mixtures of an Ising and a van der Waals fluid. Depending on the relative interaction strengths, their three dimensional phase diagrams show lines of tricritical consolute and plait points, lines of critical end points...
Gespeichert in:
| Datum: | 2003 |
|---|---|
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут фізики конденсованих систем НАН України
2003
|
| Schriftenreihe: | Condensed Matter Physics |
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/120766 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Monte Carlo simulation of phase equilibria in Ising fluids and their mixtures / W. Fenz, R. Folk // Condensed Matter Physics. — 2003. — Т. 6, № 4(36). — С. 675-686. — Бібліогр.: 33 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Zusammenfassung: | The mean field theory for the pure Ising fluid was recently extended to binary
mixtures of an Ising and a van der Waals fluid. Depending on the relative
interaction strengths, their three dimensional phase diagrams show lines of
tricritical consolute and plait points, lines of critical end points and magnetic
consolute point lines. Our current efforts are to compare these mean field
results with different Monte Carlo simulation techniques, investigating both
first order (liquid-vapor and demixing) and second order (paramagneticferromagnetic)
phase transitions. We show the resulting ρ, T phase diagrams
of the pure Ising fluid for different magnetic interaction strengths
R and constant pressure cross-sections of the x, T, p phase diagrams
of Ising mixtures for different relative interaction strengths. The methods
we have used include Gibbs Ensemble MC, Multihistogram Reweighting,
Hyper-parallel Tempering, the cumulant intersection method and the newly
developed Density of States MC technique. |
|---|