Spin-polarized electron tunneling between charge-density-wave metals

For junctions between metals partially gapped by charge density waves (CDWs), the quasiparticle tunnel currents J(V) and conductances G(V) in external magnetic fields H are calculated as functions of H, the bias voltage V, temperature T, the dielectric gaps ∑, and the gapped portions μ of the Fermi...

Full description

Saved in:
Bibliographic Details
Published in:Физика низких температур
Date:2005
Main Authors: Ekino, T., Gabovich, A.M., Voitenko, A.I.
Format: Article
Language:English
Published: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2005
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/120777
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Spin-polarized electron tunneling between charge-density-wave metals / T. Ekino, A.M. Gabovich, and A.I. Voitenko // Физика низких температур. — 2005. — Т. 31, № 1. — С. 77-93. — Бібліогр.: 93 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:For junctions between metals partially gapped by charge density waves (CDWs), the quasiparticle tunnel currents J(V) and conductances G(V) in external magnetic fields H are calculated as functions of H, the bias voltage V, temperature T, the dielectric gaps ∑, and the gapped portions μ of the Fermi surface (FS). The paramagnetic effect of H is taken into account, whereas orbital effects are neglected. General expressions are obtained for different CDW metal electrodes. Analytical formulas are obtained for T = 0. Explicit numerical calculations are carried out for symmetrical junctions. The results are substantially unlike those for junctions between superconductors. It is shown that due to the interplay between quasiparticles from nested and non-nested FS sections the junction properties involve features appropriate to both symmetrical and asymmetrical setups. In particular, for H = 0 discontinuities at eV = ±2∑ and square-root singularities at eV = ±∑ should coexist. Here e is the elementary charge. For H ≠ 0 the former remain intact, while the latter split. It is suggested to use the splitting as a verification of the CDW nature of the pseudogap in high-Tc superconducting oxides.
ISSN:0132-6414