Effect of polymer concentration and length of hydrophobic end block on the unimer-micelle transition broadness in amphiphilic ABA symmetric triblock copolymer solutions

The effects of the length of each hydrophobic end block Nst and polymer concentration φP on the transition broadness in amphiphilic ABA symmetric triblock copolymer solutions are studied using the self-consistent field lattice model. When the system is cooled, micelles are observed, i.e.,the homogen...

Full description

Saved in:
Bibliographic Details
Published in:Condensed Matter Physics
Date:2013
Main Authors: Han, X.-G., Ma, Y.-H., Ouyang, S.-L.
Format: Article
Language:English
Published: Інститут фізики конденсованих систем НАН України 2013
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/120834
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Effect of polymer concentration and length of hydrophobic end block on the unimer-micelle transition broadness in amphiphilic ABA symmetric triblock copolymer solutions / X.-G. Han, Y.-H. Ma, S.-L. Ouyang // Condensed Matter Physics. — 2013. — Т. 16, № 3. — С. 33601:1-8. — Бібліогр.: 22 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-120834
record_format dspace
spelling Han, X.-G.
Ma, Y.-H.
Ouyang, S.-L.
2017-06-13T05:29:46Z
2017-06-13T05:29:46Z
2013
Effect of polymer concentration and length of hydrophobic end block on the unimer-micelle transition broadness in amphiphilic ABA symmetric triblock copolymer solutions / X.-G. Han, Y.-H. Ma, S.-L. Ouyang // Condensed Matter Physics. — 2013. — Т. 16, № 3. — С. 33601:1-8. — Бібліогр.: 22 назв. — англ.
1607-324X
PACS: 61.25.Hp, 64.75.+g, 82.60.Fa
DOI:10.5488/CMP.16.33601
arXiv:1309.6207
https://nasplib.isofts.kiev.ua/handle/123456789/120834
The effects of the length of each hydrophobic end block Nst and polymer concentration φP on the transition broadness in amphiphilic ABA symmetric triblock copolymer solutions are studied using the self-consistent field lattice model. When the system is cooled, micelles are observed, i.e.,the homogenous solution (unimer)-micelle transition occurs. When Nst is increased, at fixed φP, micelles occur at higher temperature, and the temperature-dependent range of micellar aggregation and half-width of specific heat peak for unimer-micelle transition increase monotonously. Compared with associative polymers, it is found that the magnitude of the transition broadness is determined by the ratio of hydrophobic to hydrophilic blocks, instead of chain length. When φP is decreased, given a large Nst, the temperature-dependent range of micellar aggregation and half-width of specific heat peak initially decease, and then remain nearly constant. It is shown that the transition broadness is concerned with the changes of the relative magnitudes of the eductions of nonstickers and solvents from micellar cores.
Вплив довжини кожного гiдрофобного прикiнцевого блоку Nst i концентрацiї полiмера φ¯P на ширину переходу в симетричних ABA триблочних амфiфiльних кополiмерних розчинах дослiджується шляхом використання ґраткової моделi самоузгодженого поля. Коли система охолоджена, спостерiгаються мiцели, тобто вiдбувається перехiд однорiдний розчин (мономер)-мiцела. Якщо Nst зростає при сталому φ¯P, то мiцели виникають при високiй температурi, а температурно залежна область агрегацiї мiцел i пiвширина пiку питомої теплоємностi для переходу мономер-мiцела зростають монотонно. Порiвнюючи з асоцiативними полiмерами, знайдено, що величина ширини переходу визначається вiдношенням гiдрофобних блокiв до гiдрофiльних, а не довжиною ланцюга. Коли φ¯P зменшується при великому значеннi Nst, температурно залежна область мiцелярної агрегацiї та пiвширина пiку питомої теплоємностi спо-чатку зменшуються, а потiм залишаються майже сталими. Показано, що ширина переходу пов’язана зi змiною вiдносних величин видiлення незв’язувальної речовини i розчинникiв з мiцелярних корiв.
This research is financially supported by the National Nature Science Foundations of China (11147132) and the Inner Mongolia municipality (2012MS0112), and the Innovative Foundation of Inner Mongolia University of Science and Technology (2011NCL018).
en
Інститут фізики конденсованих систем НАН України
Condensed Matter Physics
Effect of polymer concentration and length of hydrophobic end block on the unimer-micelle transition broadness in amphiphilic ABA symmetric triblock copolymer solutions
Вплив концентрацiї полiмера i довжини гiдрофобного прикiнцевого блоку на ширину переходу мономер-мiцела в ABA симетричних триблочних амфiфiльних кополiмерних розчинах
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Effect of polymer concentration and length of hydrophobic end block on the unimer-micelle transition broadness in amphiphilic ABA symmetric triblock copolymer solutions
spellingShingle Effect of polymer concentration and length of hydrophobic end block on the unimer-micelle transition broadness in amphiphilic ABA symmetric triblock copolymer solutions
Han, X.-G.
Ma, Y.-H.
Ouyang, S.-L.
title_short Effect of polymer concentration and length of hydrophobic end block on the unimer-micelle transition broadness in amphiphilic ABA symmetric triblock copolymer solutions
title_full Effect of polymer concentration and length of hydrophobic end block on the unimer-micelle transition broadness in amphiphilic ABA symmetric triblock copolymer solutions
title_fullStr Effect of polymer concentration and length of hydrophobic end block on the unimer-micelle transition broadness in amphiphilic ABA symmetric triblock copolymer solutions
title_full_unstemmed Effect of polymer concentration and length of hydrophobic end block on the unimer-micelle transition broadness in amphiphilic ABA symmetric triblock copolymer solutions
title_sort effect of polymer concentration and length of hydrophobic end block on the unimer-micelle transition broadness in amphiphilic aba symmetric triblock copolymer solutions
author Han, X.-G.
Ma, Y.-H.
Ouyang, S.-L.
author_facet Han, X.-G.
Ma, Y.-H.
Ouyang, S.-L.
publishDate 2013
language English
container_title Condensed Matter Physics
publisher Інститут фізики конденсованих систем НАН України
format Article
title_alt Вплив концентрацiї полiмера i довжини гiдрофобного прикiнцевого блоку на ширину переходу мономер-мiцела в ABA симетричних триблочних амфiфiльних кополiмерних розчинах
description The effects of the length of each hydrophobic end block Nst and polymer concentration φP on the transition broadness in amphiphilic ABA symmetric triblock copolymer solutions are studied using the self-consistent field lattice model. When the system is cooled, micelles are observed, i.e.,the homogenous solution (unimer)-micelle transition occurs. When Nst is increased, at fixed φP, micelles occur at higher temperature, and the temperature-dependent range of micellar aggregation and half-width of specific heat peak for unimer-micelle transition increase monotonously. Compared with associative polymers, it is found that the magnitude of the transition broadness is determined by the ratio of hydrophobic to hydrophilic blocks, instead of chain length. When φP is decreased, given a large Nst, the temperature-dependent range of micellar aggregation and half-width of specific heat peak initially decease, and then remain nearly constant. It is shown that the transition broadness is concerned with the changes of the relative magnitudes of the eductions of nonstickers and solvents from micellar cores. Вплив довжини кожного гiдрофобного прикiнцевого блоку Nst i концентрацiї полiмера φ¯P на ширину переходу в симетричних ABA триблочних амфiфiльних кополiмерних розчинах дослiджується шляхом використання ґраткової моделi самоузгодженого поля. Коли система охолоджена, спостерiгаються мiцели, тобто вiдбувається перехiд однорiдний розчин (мономер)-мiцела. Якщо Nst зростає при сталому φ¯P, то мiцели виникають при високiй температурi, а температурно залежна область агрегацiї мiцел i пiвширина пiку питомої теплоємностi для переходу мономер-мiцела зростають монотонно. Порiвнюючи з асоцiативними полiмерами, знайдено, що величина ширини переходу визначається вiдношенням гiдрофобних блокiв до гiдрофiльних, а не довжиною ланцюга. Коли φ¯P зменшується при великому значеннi Nst, температурно залежна область мiцелярної агрегацiї та пiвширина пiку питомої теплоємностi спо-чатку зменшуються, а потiм залишаються майже сталими. Показано, що ширина переходу пов’язана зi змiною вiдносних величин видiлення незв’язувальної речовини i розчинникiв з мiцелярних корiв.
issn 1607-324X
url https://nasplib.isofts.kiev.ua/handle/123456789/120834
citation_txt Effect of polymer concentration and length of hydrophobic end block on the unimer-micelle transition broadness in amphiphilic ABA symmetric triblock copolymer solutions / X.-G. Han, Y.-H. Ma, S.-L. Ouyang // Condensed Matter Physics. — 2013. — Т. 16, № 3. — С. 33601:1-8. — Бібліогр.: 22 назв. — англ.
work_keys_str_mv AT hanxg effectofpolymerconcentrationandlengthofhydrophobicendblockontheunimermicelletransitionbroadnessinamphiphilicabasymmetrictriblockcopolymersolutions
AT mayh effectofpolymerconcentrationandlengthofhydrophobicendblockontheunimermicelletransitionbroadnessinamphiphilicabasymmetrictriblockcopolymersolutions
AT ouyangsl effectofpolymerconcentrationandlengthofhydrophobicendblockontheunimermicelletransitionbroadnessinamphiphilicabasymmetrictriblockcopolymersolutions
AT hanxg vplivkoncentraciípolimeraidovžinigidrofobnogoprikincevogoblokunaširinuperehodumonomermicelavabasimetričnihtribločnihamfifilʹnihkopolimernihrozčinah
AT mayh vplivkoncentraciípolimeraidovžinigidrofobnogoprikincevogoblokunaširinuperehodumonomermicelavabasimetričnihtribločnihamfifilʹnihkopolimernihrozčinah
AT ouyangsl vplivkoncentraciípolimeraidovžinigidrofobnogoprikincevogoblokunaširinuperehodumonomermicelavabasimetričnihtribločnihamfifilʹnihkopolimernihrozčinah
first_indexed 2025-11-25T21:20:35Z
last_indexed 2025-11-25T21:20:35Z
_version_ 1850556616464662528
fulltext Condensed Matter Physics, 2013, Vol. 16, No 3, 33601: 1–8 DOI: 10.5488/CMP.16.33601 http://www.icmp.lviv.ua/journal Effect of polymer concentration and length of hydrophobic end block on the unimer-micelle transition broadness in amphiphilic ABA symmetric triblock copolymer solutions X.-G. Han1,2∗, Y.-H. Ma1,2, S.-L. Ouyang2 1 School of Mathematics, Physics and Biological engineering, Inmongolia Science and Technology University, Baotou 014010, China 2 Key laboratory of Integrated Exploitation of Bayan Obo Multi-Metal Resources, Inmongolia Science and Technology University, Baotou 014010, China Received December 7, 2012, in final form March 28, 2013 The effects of the length of each hydrophobic end block Nst and polymer concentration φ̄P on the transition broadness in amphiphilic ABA symmetric triblock copolymer solutions are studied using the self-consistent field lattice model. When the system is cooled, micelles are observed, i.e.,the homogenous solution (unimer)- micelle transition occurs. When Nst is increased, at fixed φ̄P, micelles occur at higher temperature, and the temperature-dependent range of micellar aggregation and half-width of specific heat peak for unimer-micelle transition increase monotonously. Compared with associative polymers, it is found that the magnitude of the transition broadness is determined by the ratio of hydrophobic to hydrophilic blocks, instead of chain length. When φ̄P is decreased, given a large Nst , the temperature-dependent range of micellar aggregation and half- width of specific heat peak initially decease, and then remain nearly constant. It is shown that the transition broadness is concerned with the changes of the relative magnitudes of the eductions of nonstickers and solvents from micellar cores. Key words: transition broadness, self-consistent field, amphiphilic copolymer PACS: 61.25.Hp, 64.75.+g, 82.60.Fa 1. Introduction Amphiphilic block copolymers are particularly versatile macromolecules because they allow for a rich variety of different structures. Their length and the number of blocks of each species can be tuned at will, from di- and triblock to multiblock copolymers. Their architectures can be linear, branched or star- like, the blocks may be distributed randomly or regularly. Consequently, amphiphilic block copolymers have a great deal of applications such as drug delivery vectors [1], nanoparticle stabilizers, nanoreser- voirs, emulsion stabilizers, wetting agents, rheology modifiers [2, 3] or as injectable scaffold materials for tissue engineering [4]. Amphiphilic copolymers are capable of self-assembling into micelles when temperature drops to a critical micelle temperature. Below the critical micelle temperature there is an equilibrium region of a certain width, where significant amounts of both free and associated copolymer molecules coexist. Above the transition region most copolymer molecules are in micelles. It is verified theoretically [5] and experimentally [6] that the broad nature should be ascribed to the structural changes which accompany the replacement of micellar core solvent by polymer. However, the effect of the hydrophobic block on the structural changes is not clarified so far, which is very important in high polymer concentration ∗E-mail: xghan0@163.com, Phone: 011+086-472-5954303, Fax: 011+086-472-5954303 © X.-G. Han, Y.-H. Ma, S.-L. Ouyang, 2013 33601-1 http://dx.doi.org/10.5488/CMP.16.33601 http://www.icmp.lviv.ua/journal X.-G. Han, Y.-H. Ma, S.-L. Ouyang regimes. The study of the effects of polymer concentration and length of hydrophobic end block on the transition broadness in amphiphilic ABA symmetric triblock copolymer solutions would be quite useful to understand the thermodynamics of block copolymers in a selective solvent. The self-consistent field theory (SCFT) has been brought into use as a powerful tool in predicting the morphologies of complex block copolymers [7–10]. Recently, SCFT has been applied to study the prop- erties of micelles in polymer solutions [11–13]. In this report, a SCFT lattice model is applied [14–16]. In earlier publications, we have used the SCFT lattice model to study the phase behavior of physically associating polymer solutions [5, 17, 18]. It is established that the temperature-dependent behavior of aggregates is affinitive to chain architecture [5], and the effect of polymer concentration is in a way sim- ilar to that of chain architecture [18]. Now amphiphilic ABA symmetric triblock copolymer solutions are studied using SCFT lattice model. The focus is made on the effects of the length of hydrophobic end block and polymer concentration on the broadness of the transition observed. It is found that the magnitude of the transition broadness is related to the relative changes of the eductions of nonsticker and solvent from micellar cores. 2. Theory This section briefly describes the self-consistent field theory (SCFT) lattice model for nP amphiphilic ABA symmetric triblock copolymers which is assumed to be incompressible. Each triblock molecule is composed of 2Nst sticker segments forming two hydrophobic end A block and Nns nonsticker segments forming the hydrophilic middle B block, distributed over a lattice; the degree of polymerization of the chain is N (= 2Nst + Nns) and the total number of lattice sites is NL. In addition to polymer monomers, nh solvent molecules are placed on the vacant lattice sites. Stickers, nonsticky monomers and solvent molecules have the same size and each occupies one lattice site, and thusNL = nh+nPN . Nearest neighbor pairs of stickers have attractive interaction −ǫ with ǫ> 0, which is the only non-bound interaction in the present system. The approximation of the attractive interaction energy [17] is expressed as: U kBT =−χ ∑ r φ̂st(r )φ̂st(r ), (2.1) where χ is the Flory-Huggins interaction parameter in the solutions, which equals (z/2kBT )ǫ, z is the coordination number of the lattice used, where ∑ r means the summation over all the lattice sites r and. φ̂st(r ) = ∑ j ∑ s∈stδr,r j ,s is the volume fraction of stickers on the site r , where j and s are the indexes of chain and monomer of a polymer, respectively. s ∈ st means that the sth monomer belongs to the sticker monomer type. In this simulation, we perform the SCFT calculations in the canonical ensemble, and the field-theoretic free energy F [17, 19] is defined as F [ω+,ω−] kBT = ∑ r { 1 4χ ω2 −(r )−ω+(r ) } −nP lnQP[ωst,ωns]−nh lnQh[ωh], (2.2) where Qh is the partition function of a solvent molecule subject to the field ωh(r ) = ω+(r ), which is de- fined asQh = (1/nh) ∑ r exp[− ωh(r )].QP is the partition function of a noninteraction polymer chain sub- ject to the fields ωst(r )=ω+(r )−ω−(r ) and ωns(r ) =ω+(r ), which act on sticker and nonsticker segments, respectively. Minimizing the free energy function F withω−(r ) andω+(r ) leads to the following saddle point equa- tions: ω−(r )= 2χφst(r ), (2.3) φst(r )+φns(r )+φh(r )= 1, (2.4) where φst(r ) = 1 zNL nP QP ∑ s∈st ∑ αs Gαs (r, s|1)Gαs (r, s|N ) G(r, s) (2.5) and φns(r ) = 1 zNL nP QP ∑ s∈ns ∑ αs Gαs (r, s|1)Gαs (r, s|N ) G(r, s) (2.6) 33601-2 Effect of polymer concentration and length of end block are the average numbers of sticker and nonsticker segments at r , respectively, and φh(r )= 1 NL nh Qh exp[−ωh(r )] is the average number of solvent molecules at r .QP is expressed as QP = 1 zNL ∑ rN ∑ αN GαN (r, N |1), where rN and αN denote the position and orientation of the N th segment of the chain, respectively.∑ rN ∑ αN means the summation over all the possible positions and orientations of the N th segment of the chain, respectively. Gαs (r, s|1) and Gαs (r, s|N ) are the end segment distribution functions of the sth segment of the chain. G(r, s) is the free segment weighting factor. Following the scheme of Schentiens and Leermakers [20], Gαs (r, s|1) is the end segment distribution function of the sth segment of the chain, which is evaluated from the following recursive relation: Gαs (r, s|1) =G(r, s) ∑ r ′s−1 ∑ αs−1 λ αs−αs−1 rs−r ′s−1 Gαs−1 (r ′, s −1|1), (2.7) where G(r, s) is the free segment weighting factor and is expressed as G(r, s) = { exp[−ωns(rs)] , s ∈ns, exp[−ωst(rs)] , s ∈ st. The initial condition is Gα1 (r,1|1) =G(r,1) for all the values of α1. In the above expression, the values of λ αs−αs−1 rs−r ′s−1 depend on the chain model used. We assume that λ αs−αs−1 rs−r ′ s−1 = { 0, αs =αs−1 , 1/(z −1), otherwise . Another end segment distribution functionGαs (r, s|N ) is evaluated from the following recursive relation: Gαs (r, s|N ) =G(r, s) ∑ r ′s+1 ∑ αs+1 λ αs+1−αs r ′s+1−rs Gαs+1 (r ′, s +1|N ), (2.8) with the initial condition GαN (r, N |N ) = G(r, N ) for all the values of αN . In this work, the chain is de- scribed as a random walk without the possibility of direct backfolding. Although self-intersections of a chain are not permitted, the excluded volume effect is sufficiently taken into account [21]. The saddle point is calculated using the pseudo-dynamical evolution process [17]. The calculation is initiated from appropriately random-chosen fieldsω+(r ) andω−(r ), and stopped when the change of free energy F between two successive iterations is reduced to the needed precision. The resulting configura- tion is taken as a saddle point one. By comparing the free energies of the saddle point configurations obtained from different initial fields, the relative stability of the observed morphologies can be assessed. 3. Result and discussion In our studies, the amphiphilic ABA symmetric triblock copolymers depend on three tunable molecu- lar parameters: χ (the Flory-Huggins interaction parameter), Nns (the length of hydrophilic middle block, in this paperNns = 9 ) andNst (the length of each hydrophobic end block). The simulation calculations are performed in a three-dimensional simple cubic lattice with periodic boundary condition. The results pre- sented below are obtained from the lattice with NL = 263. The focus is made on the temperature behavior of micelle morphologies when the length of hydrophobic end block changes. Figure 1 shows the phase diagram of the systems with different length of each hydrophobic end block Nst. When χ is increased, micelles are observed as a inhomogenous morphology if Nst = 1 1. The χ value on micellar boundary increases with decreasing φ̄P. When Nst is increased, at fixed φ̄P, the χ value on 33601-3 X.-G. Han, Y.-H. Ma, S.-L. Ouyang Figure 1. The phase diagram for the systems with different lengths of each hydrophobic end block Nst . The boundary between homogenous solutions (blow boundary) and micelle morphology (above bound- ary) is obtained. The squares, triangles and diamonds correspond to the boundaries for Nst = 4, 2, 1, respectively. micellar boundary shifts to a small value. The increase in the length of hydrophobic end block is favorable to the occurrence of micelles in the system. The variation of the average number of stickers at the micellar cores denoted by φ̄cost with the χ devia- tion frommicellar boundary χr is calculated. For different Nst at φ̄P = 0.8 and different φ̄P at Nst = 4, the curves of φ̄cost (χr ) are shown in figure 2 (a) and (b), respectively. When Nst = 1, as shown in figure 2 (a), φ̄cost rises and approaches to 1 with an increase in χr . When Nst is increased, the value of φ̄ co st at fixed χr decreases, and its temperature-dependent range goes up. For Nst = 4 [see figure 2 (b)], when φ̄P is de- creased, the value of φ̄cost at fixed χr does monotonously increase only in the χr range near χr = 0. When χr is increased to some extent, at the middle concentration regimes, φ̄ co st at fixed χr decreases with a de- creasing φ̄P. It is shown that the magnitude of the temperature-dependent range of micelle aggregation does not monotonously change with φ̄P, which is different from the case of changing Nst at fixed φ̄P. 1The structural morphology of MFH morphology [17] occurs at a narrow region of ∆χ= 0.1 neighboring the micellar boundary when φ̄P > 0.7 (not shown), which is ignored. Figure 2. The variations of average numbers of stickers at the micellar cores with the χ deviation from micellar boundary χr , for various lengths of each hydrophobic end block Nst at φ̄P = 0.8 and different φ̄P at Nst = 4, are presented by figure 2 (a) and (b), respectively. In figure (a), The squares, triangles and diamonds correspond to Nst = 4, 2, 1, respectively; In figure (b), the squares, triangles, diamonds and hexagons denote φ̄P = 0.8, 0.4, 0.2, 0.1, respectively. 33601-4 Effect of polymer concentration and length of end block Figure 3. The changes of specific heat capacity in different amphiphilic ABA symmetric triblock copoly- mers with the χ deviation frommicellar boundary χr are presented by figure 3 (a) and (b) corresponding to the systems shown by figure 2 (a) and (b), respectively. The half-width of a specific heat peak may be an intrinsic measure of transition broadness. [5, 22]. In this work, the heat capacity per site of amphiphilic ABA symmetric triblock copolymers is expressed as (in the unit of kB): CV = ( ∂U ∂T ) NL ,nP = 1 NL χ2 ∂ ∂χ [∑ r φ2 st(r ) ] . (3.1) For various Nst at φ̄P = 0.8 and different concentrations at Nst = 4, the CV (χr ) curves of the unimer- micelle transition are shown in figure 3 (a) and 3 (b), respectively. For unimer-micelle transition, a peak appears in each CV (χr ) curve. When Nst is increased, as shown in figure 3 (a), the half-width of the transition peak rises, and the symmetry and the height of the transition peak decrease. The broadness of unimer-micelle transition increases with increasing the length of hydrophobic end block, which is in reasonable agreement with that on temperature-dependent range of micellar aggregation. Whereas for the case of changing φ̄P at Nst = 4, the half-width and height of the transition peak do not monotonously change with φ̄P. When φ̄P is decreased, the symmetry of the peak always increases, the height of the tran- sition peak firstly increases, and then decreases. Its half-width initially drops, and then nearly remains constant with a decreasing φ̄P. In other words, at high concentrations the broadness of unimer-micelle transition is affected by polymer concentration. In middle and low concentration regimes, the height of the transition peak is affected by the change of polymer concentration. However, the transition broadness is almost unrelated to polymer concentration. It is shown that the effect of polymer concentration on the transition broadness is consistent with that on the temperature-dependent range of micellar aggregation. It is obvious that the increase in the degree of aggregation at micellar cores results from the educ- tions of nonsticky monomers and solvents. Micelles appear when temperature drops below the critical micelle temperature. With a further decrease of temperature, solvents and nonstickers continue to be expelled from micellar cores, and the degree of aggregation of micellar cores strengthens. Therefore, the temperature-dependent behavior of micellar aggregation brings about the existence of the transition broadness, rather than a transition point. The broadness of unimer-micelle transition increases with in- creasing the length of hydrophobic end block (i.e., the length of chain), which is consistent with the effect of decreasing the length of hydrophilic middle block between neighboring hydrophobic blocks, at a fixed chain length, in associative polymer solutions [5]. It is demonstrated that the broadness of the transitions concerned with micelles is determined by the ratio of hydrophobic to hydrophilic blocks, which is not related to the length of polymer chain. Furthermore, the relative magnitude of contributions of nonsticky monomers and solvents to aggre- gation of micellar cores should be related to micelle structure and the relationship among micelles. At high concentrations, when the length of hydrophobic end block Nst is increased, the micellar volume fraction in the system rises and the micelle structure tends to be intricate. These factors result in the difficulties of the eductions of nonsticky monomers and solvents from micellar cores. Therefore, with an 33601-5 X.-G. Han, Y.-H. Ma, S.-L. Ouyang Figure 4. The variation of the ratios of the changes of average numbers of nonstickers and solvents to that of stickers at the micellar cores when the χ deviation frommicellar boundary χr , for various lengths of each hydrophobic end block Nst at φ̄P = 0.8 and different φ̄P at Nst = 4, is presented by figure 4 (a) and (b), respectively. The change ∆φcos (χr ) equals φcos (χr )−φcos (χr − 0.1), where s denotes st, ns, so, respectively. In figure (a), The open and solid squares, triangles and diamonds correspond to the cases for Nst = 4,2,1, respectively; In figure (b), the open and solid squares, diamonds and hexagons denote the cases for φ̄P = 0.8, 0.4, 0.1, respectively. increase in Nst at fixed φ̄P, the temperature-dependent range of aggregation of micellar cores, as well as the transition broadness, rises. Moreover, when Nst is relatively big, the relationship among micelles is strong, which markedly hampers the eduction of nostickers, thus the contribution of solvents will be rather important. As shown in figure 4 (a), when Nst is increased from Nst = 1, given a fixed φ̄P, the con- tribution of nonstickers to aggregation of stickers goes down and that of solvents rises with an increasing χr , at the neighborhood of χr > 0. It is noted that the evidently temperature-dependent range of the ra- tios of the changes of average numbers of nonstickers and solvents to that of stickers at the micellar cores rises with an increasing Nst. The larger is the evidently temperature-dependent range of the above ra- tio, the bigger is the transition broadness. It is shown that the magnitude of the transition broadness is concerned with the changes of the relative magnitudes of the eductions of nonstickers and solvents from micellar cores. In high concentrations, when polymer concentration is decreased, for a large Nst, the effect of the relationship among micelles on eductions of nonstickers and solvents evidently dies down. Therefore, the transition broadness decreases with a decreasing φ̄P. At intermediate and low concentrations, the effect of the relationship among micelles on eductions of nonstickers and solvents is weak, especially to nonstickers. Seen from figure 4 (b), with an increasing χr from χr = 0.1, the ratios of the changes of average numbers of nonstickers and solvents to that of stickers at the micellar cores nearly remain 33601-6 Effect of polymer concentration and length of end block constant, where solvents and nonstickers are expelled proportionally. When polymer concentration is decreased to some extent, the aggregation of micellar cores is dominated by the eductions of solvents. Due to the existence of a large quantity of solvents among micellar cores, it is difficult to expel a small amount of solvent at the micellar core. Therefore, although the effect of the relationship among micelles is already very weak, the transition broadness always remains constant with a decrease in φ̄P when the contribution of nonstickers is rather important and is temperature-dependent in a larger range of χr [figure 4 (b)]. 4. Conclusion and summary The effects of the length of each hydrophobic end block Nst and polymer concentration φ̄P on the transition broadness in amphiphilic ABA symmetric triblock copolymer solutions are studied using the self-consistent field lattice model. When Nst is changed, at fixed φ̄P, micelles occur at a higher temper- ature, and the broadness of unimer-micelle transition also increases. Compared with associating poly- mer solutions, it is found that the magnitude of the transition broadness is determined by the ratio of hydrophobic to hydrophilic blocks rather than by the length of polymer chain. When φ̄P is decreased, given a large Nst, the transition does not change monotonously. In high concentration regimes, the tran- sition broadness decreases with decreasing φ̄P, and in intermediate and low concentration regimes, the transition broadness remains constant with φ̄P. It is demonstrated that the magnitude of the transition broadness is concerned with the changes of the relative magnitudes of the eductions of nonstickers and solvents from micellar cores. Acknowledgements This research isfinancially supported by theNational Nature Science Foundations of China (11147132) and the Inner Mongolia municipality (2012MS0112), and the Innovative Foundation of Inner Mongolia University of Science and Technology (2011NCL018). References 1. Kataoka K., Harada A., Nagasaki Y., Adv. Drug Delivery Rev., 2001, 47, 113; doi:10.1016/S0169-409X(00)00124-1. 2. Riess G., Prog. Polym. Sci., 2003, 28, 1107; doi:10.1016/S0079-6700(03)00015-7. 3. Bhatia S.R., Mourchid A., Joanicot M., Curr. Opin. Colloid Interface Sci., 2001, 6, 471; doi:10.1016/S1359-0294(01)00122-4. 4. Fatimi A., Tassin J.F., Quillard S. , Axelos M.A.V., Weiss P., Biomaterials, 2008, 29, 533; doi:10.1016/j.biomaterials.2007.10.032. 5. Han X.G., Zhang X.F., Ma Y.H., Condens. Matter Phys., 2012, 15, No. 3, 33602; doi:10.5488/CMP.15.33602. 6. Goldmints I., Gottberg F.K.V., Smith K.A., Hatton T.A., Langmuir, 1997, 13, 3659; doi:10.1021/la970140v. 7. Orland H., Schick M., Macromolecules, 1996, 29, No. 2, 713; doi:10.1021/ma9508461. 8. Matsen M.W., Schick M., Phys. Rev. Lett., 1994, 72, No. 16, 2660; doi:10.1103/PhysRevLett.72.2660. 9. Tang P., Qiu F., Zhang H.D., Yang Y.L., Phys. Rev. E, 2004, 69, No. 3, 031803. 10. He X., Liang H., Huang L., Pan C., J. Phys. Chem. B, 2004, 108, No. 5, 1731; doi:10.1021/jp0359337. 11. Cavallo A., Muller M., Binder K., Macromolecules, 2006, 39, No. 26, 9539; doi:10.1021/ma061493g. 12. Jelinek K., Limpouchova Z., Uhlk F., Prochazka K., Macromolecules, 2007, 40, No. 21, 7656; doi:10.1021/ma070928c. 13. Charlaganov M., Borisov O.V., Leermakers F.A.M., Macromolecules, 2008, 41, 3668; doi:10.1021/ma800130q. 14. Chen J.Z., Zhang C.X., Sun Z.Y., Zheng Y.S., An L.J., J. Chem. Phys., 2006, 124, 104907; doi:10.1063/1.2176619. 15. Chen J.Z., Sun Z.Y., Zhang C.X., An L.J., Tong Z., J. Chem. Phys., 2007, 127, 024105; doi:10.1063/1.2750337. 16. Chen J.Z., Sun Z.Y., Zhang C.X., An L.J., Tong Z., J. Chem. Phys., 2008, 128, 074904; doi:10.1063/1.2831802. 17. Han X.G., Zhang C.X., J. Chem. Phys., 2010, 132, 164905; doi:10.1063/1.3400648. 18. Han X.G., Zhang X.F., Ma Y.H., Zhang C.X., Guan Y.B., Condens. Matter Phys., 2011, 14, No. 4, 43601; doi:10.5488/CMP.14.43601. 19. Fredrickson G.H., The Equilibrium Theory of Inhomogenous Polymers, Clarendon Press, Oxford, 2005. 33601-7 http://dx.doi.org/10.1016/S0169-409X(00)00124-1 http://dx.doi.org/10.1016/S0079-6700(03)00015-7 http://dx.doi.org/10.1016/S1359-0294(01)00122-4 http://dx.doi.org/10.1016/j.biomaterials.2007.10.032 http://dx.doi.org/10.5488/CMP.15.33602 http://dx.doi.org/10.1021/la970140v http://dx.doi.org/10.1021/ma9508461 http://dx.doi.org/10.1103/PhysRevLett.72.2660 http://dx.doi.org/10.1021/jp0359337 http://dx.doi.org/10.1021/ma061493g http://dx.doi.org/10.1021/ma070928c http://dx.doi.org/10.1021/ma800130q http://dx.doi.org/10.1063/1.2176619 http://dx.doi.org/10.1063/1.2750337 http://dx.doi.org/10.1063/1.2831802 http://dx.doi.org/10.1063/1.3400648 http://dx.doi.org/10.5488/CMP.14.43601 X.-G. Han, Y.-H. Ma, S.-L. Ouyang 20. Leermakers F.A.M., Scheutjens J.M.H.M., J. Chem. Phys., 1988, 89, No. 5, 3264; doi:10.1063/1.454931. 21. Medvedevskikh Y.G., Condens. Matter Phys., 2001, 4, No. 2, 209; doi:10.5488/CMP.4.2.209. 22. Douglas J.F., Dudowicz J., Freeda K.F., J. Chem. Phys., 2006, 125, 114907; doi:10.1063/1.2356863. Вплив концентрацiї полiмера i довжини гiдрофобного прикiнцевого блоку на ширину переходу мономер-мiцела в ABA симетричних триблочних амфiфiльних кополiмерних розчинах К.-Г. Ган1,2, Й.-Г. Ма1,2, С.-Л. Оуянг2 1 Школа математики, фiзики i бiологiчної iнженерiї, унiверситет науки i технологiй внутрiшньої Монголiї, Баоту 014010, Китай 2 Головна лабораторiя iнтегрованого використання мультиметалiчних ресурсiв Баян Обо, унiверситет науки i технологiї внутрiшньої Монголiї, Баоту 014010, Китай Вплив довжини кожного гiдрофобного прикiнцевого блоку Nst i концентрацiї полiмера φ̄P на ширину переходу в симетричних ABA триблочних амфiфiльних кополiмерних розчинах дослiджується шляхом використання ґраткової моделi самоузгодженого поля. Коли система охолоджена, спостерiгаються мiце- ли, тобто вiдбувається перехiд однорiдний розчин (мономер)-мiцела. Якщо Nst зростає при сталому φ̄P, то мiцели виникають при високiй температурi, а температурно залежна область агрегацiї мiцел i пiв- ширина пiку питомої теплоємностi для переходу мономер-мiцела зростають монотонно. Порiвнюючи з асоцiативними полiмерами, знайдено, що величина ширини переходу визначається вiдношенням гiдро- фобних блокiв до гiдрофiльних, а не довжиною ланцюга. Коли φ̄P зменшується при великому значеннi Nst , температурно залежна область мiцелярної агрегацiї та пiвширина пiку питомої теплоємностi спо- чатку зменшуються, а потiм залишаються майже сталими. Показано, що ширина переходу пов’язана зi змiною вiдносних величин видiлення незв’язувальної речовини i розчинникiв з мiцелярних корiв. Ключовi слова: ширина переходу, самоузгоджене поле, амфiфiльний кополiмер 33601-8 http://dx.doi.org/10.1063/1.454931 http://dx.doi.org/10.5488/CMP.4.2.209 http://dx.doi.org/10.1063/1.2356863 Introduction Theory Result and discussion Conclusion and summary