Renormalization group domains of the scalar Hamiltonian

Using the local potential approximation of the exact renormalization group (RG) equation, we show various domains of values of the parameters of the O(1) -symmetric scalar Hamiltonian. In three dimensions, in addition to the usual critical surface Sc (attraction domain of the Wilson-Fisher fixed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2000
Hauptverfasser: Bagnuls, C., Bervillier, C.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут фізики конденсованих систем НАН України 2000
Schriftenreihe:Condensed Matter Physics
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/120996
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Renormalization group domains of the scalar Hamiltonian / C. Bagnuls, C. Bervillier // Condensed Matter Physics. — 2000. — Т. 3, № 3(23). — С. 559-575. — Бібліогр.: 28 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Using the local potential approximation of the exact renormalization group (RG) equation, we show various domains of values of the parameters of the O(1) -symmetric scalar Hamiltonian. In three dimensions, in addition to the usual critical surface Sc (attraction domain of the Wilson-Fisher fixed point), we explicitly show the existence of a first-order phase transition domain Sf separated from Sc by the tricritical surface St (attraction domain of the Gaussian fixed point). Sf and Sc are two distinct domains of repulsion for the Gaussian fixed point, but Sf is not the basin of attraction of a fixed point. Sf is characterized by an endless renormalized trajectory lying entirely in the domain of negative values of the ϕ⁴ -coupling. This renormalized trajectory also exists in four dimensions making the Gaussian fixed point ultra-violet stable (and the ϕ⁴₄ renormalized field theory asymptotically free but with a wrong sign of the perfect action). We also show that a very retarded classical-to-Ising crossover may exist in three dimensions (in fact below four dimensions). This could be an explanation of the unexpected classical critical behaviour observed in some ionic systems.