Dielectric relaxation in NaNbO₃ single crystal

Dielectric permittivity studies of reduced samples of NaNbO₃ single crystal in the range of temperatures 30–500 °C and frequency 20 Hz-1 MHz are reported. In this temperature range a relaxation process is observed in the frequency range of about 100 kHz. This is an additional process to the earlier...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Condensed Matter Physics
Дата:1999
Автор: Konieczny, K.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики конденсованих систем НАН України 1999
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/121010
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Dielectric relaxation in NaNbO₃ single crystal / K. Konieczny // Condensed Matter Physics. — 1999. — Т. 2, № 4(20). — С. 655-660. — Бібліогр.: 8 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-121010
record_format dspace
spelling Konieczny, K.
2017-06-13T12:38:44Z
2017-06-13T12:38:44Z
1999
Dielectric relaxation in NaNbO₃ single crystal / K. Konieczny // Condensed Matter Physics. — 1999. — Т. 2, № 4(20). — С. 655-660. — Бібліогр.: 8 назв. — англ.
1607-324X
DOI:10.5488/CMP.2.4.655
PACS: 77.22.Ch, 77.22.Gm
https://nasplib.isofts.kiev.ua/handle/123456789/121010
Dielectric permittivity studies of reduced samples of NaNbO₃ single crystal in the range of temperatures 30–500 °C and frequency 20 Hz-1 MHz are reported. In this temperature range a relaxation process is observed in the frequency range of about 100 kHz. This is an additional process to the earlier reported one [7]. The obtained data were fitted to Cole-Cole formula. The dispersion step ∆ǫ (the maximum value of ∆ǫ =1000) is temperature dependent. The mean relaxation time τ does not obey the Arrhenius law above TC. The occurrence of this relaxation process may be connected with oxygen vacancies.
Досліджено діелектричну сприйнятливість зразків монокристалу NaNbO₃ в діапазонах температур 30–500 °C і частот 20 Гц–1 МГц. У цьому температурному проміжку в частотній області поблизу 100 кГц спостерігається релаксаційний процес, що є доповнювальним до виявленого раніше процесу [7]. Отримані дані апроксимуються за формулою Коул-Коула. Значення дисперсії ∆ε (максимальне значення ∆ε = 1000) залежить від температури. Закон Арреніуса не виконується для середнього часу релаксації τ вище TC. Поява цього релаксаційного процесу може пов’язуватися з кисневими вакансіями.
en
Інститут фізики конденсованих систем НАН України
Condensed Matter Physics
Dielectric relaxation in NaNbO₃ single crystal
Діелектрична релаксація в монокристалі NaNbO₃
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Dielectric relaxation in NaNbO₃ single crystal
spellingShingle Dielectric relaxation in NaNbO₃ single crystal
Konieczny, K.
title_short Dielectric relaxation in NaNbO₃ single crystal
title_full Dielectric relaxation in NaNbO₃ single crystal
title_fullStr Dielectric relaxation in NaNbO₃ single crystal
title_full_unstemmed Dielectric relaxation in NaNbO₃ single crystal
title_sort dielectric relaxation in nanbo₃ single crystal
author Konieczny, K.
author_facet Konieczny, K.
publishDate 1999
language English
container_title Condensed Matter Physics
publisher Інститут фізики конденсованих систем НАН України
format Article
title_alt Діелектрична релаксація в монокристалі NaNbO₃
description Dielectric permittivity studies of reduced samples of NaNbO₃ single crystal in the range of temperatures 30–500 °C and frequency 20 Hz-1 MHz are reported. In this temperature range a relaxation process is observed in the frequency range of about 100 kHz. This is an additional process to the earlier reported one [7]. The obtained data were fitted to Cole-Cole formula. The dispersion step ∆ǫ (the maximum value of ∆ǫ =1000) is temperature dependent. The mean relaxation time τ does not obey the Arrhenius law above TC. The occurrence of this relaxation process may be connected with oxygen vacancies. Досліджено діелектричну сприйнятливість зразків монокристалу NaNbO₃ в діапазонах температур 30–500 °C і частот 20 Гц–1 МГц. У цьому температурному проміжку в частотній області поблизу 100 кГц спостерігається релаксаційний процес, що є доповнювальним до виявленого раніше процесу [7]. Отримані дані апроксимуються за формулою Коул-Коула. Значення дисперсії ∆ε (максимальне значення ∆ε = 1000) залежить від температури. Закон Арреніуса не виконується для середнього часу релаксації τ вище TC. Поява цього релаксаційного процесу може пов’язуватися з кисневими вакансіями.
issn 1607-324X
url https://nasplib.isofts.kiev.ua/handle/123456789/121010
citation_txt Dielectric relaxation in NaNbO₃ single crystal / K. Konieczny // Condensed Matter Physics. — 1999. — Т. 2, № 4(20). — С. 655-660. — Бібліогр.: 8 назв. — англ.
work_keys_str_mv AT koniecznyk dielectricrelaxationinnanbo3singlecrystal
AT koniecznyk díelektričnarelaksacíâvmonokristalínanbo3
first_indexed 2025-11-25T22:33:24Z
last_indexed 2025-11-25T22:33:24Z
_version_ 1850566859871485952
fulltext Condensed Matter Physics, 1999, Vol. 2, No. 4(20), pp. 655–660 Dielectric relaxation in NaNbO3 single crystal K.Konieczny Institute of Physics and Computer Science, Pedagogical University, 2 Podchora̧żych Str., 30-084 Kraków, Poland Received August 31, 1998, in final form December 15, 1999 Dielectric permittivity studies of reduced samples of NaNbO3 single crystal in the range of temperatures 30–500 ◦C and frequency 20 Hz-1 MHz are reported. In this temperature range a relaxation process is observed in the frequency range of about 100 kHz. This is an additional process to the earlier reported one [7]. The obtained data were fitted to Cole-Cole formula. The dispersion step ∆ǫ (the maximum value of ∆ǫ =1000) is temperature dependent. The mean relaxation time τ does not obey the Arrhenius law above TC. The occurrence of this relaxation process may be connected with oxygen vacancies. Key words: NaNbO3, single crystal, reduced sample, dielectric relaxation, oxygen vacancies PACS: 77.22.Ch, 77.22.Gm 1. Introduction The sodium niobate is a typical antiferroelectric with the perovskite structure. In the temperature range from –200 ◦C to 650 ◦C its structural, dielectric and optic properties are being changed in the six phase transitions. All these transitions are connected with the oxygen octahedrons tilts and, in addition, the off-centre dis- placement of the Nb ion takes place in the first three cases (–200 ◦C, 360 ◦C and 480 ◦C). The phase transition, at the temperature 360 ◦C, from antiferroelectric phase with orthorhombic structure (Pbma) to the antiferroelectric orthorhombic structure (Pnmm) is accompanied by the maximum change of dielectric permittiv- ity [1-6]. The results of the investigations carried out for NaNbO3 single crystal in the temperature range 30–500 ◦C and for frequencies 20 Hz-1 MHz have revealed the low-frequency relaxation processes [7]. The mean relaxation times in these processes obeyed the Arrhenius law in the vicinity of TC and the dispersion step ∆ǫ was de- pendent on temperature. Both relaxation parameters ∆ǫ and τ revealed the distinct discontinuity at the temperature TC. The arising of low-frequency relaxation has c© K.Konieczny 655 K.Konieczny 10 100 1000 10000 100000 1000000 0 500 1000 1500 2000 2500 3000 3500 400oC, 673K 390oC, 663K 380oC, 653K 370oC, 643K 360oC, 633K 350oC, 623K 340oC, 613K 320oC, 593K 300oC, 573K ε' f(Hz) 10 100 1000 10000 100000 1000000 100 1000 10000 100000 1000000 f(Hz) ε" 400oC, 673K 390oC, 663K 380oC, 653K 370oC, 643K 360oC, 633K 350oC, 623K 340oC, 613K 320oC, 593K 300oC, 573K Figure 1. The frequency dependence of real ǫ′ and imaginary ǫ ′′ part of electric permittivity. 656 Dielectric relaxation in NaNbO3 Figure 2. The example of fitting for 360 ◦C. been connected with the disorder occurring in the crystalline structure already at high temperatures, which can lead to the arising of local dipoles (polar regions). These dipoles can be responsible for relaxation processes. In order to verify this hypothesis, additional dielectric investigations of single crystals have been carried out for reduced samples. 2. Experimental The measurements were performed for a single crystal obtained by means of the “flux” method (the crystal used in the investigations described in the paper [8] was obtained using the same method). The crystal used in the measurements was annealed at the temperature of about 550 ◦C during three hours in the vacuum chamber (0.01 hPa) and then cooled (in vacuum) to the room temperature [8]. After depositing the silver electrodes they were placed in the thermostat. The temperature measurements were performed by means of a chromel-alumel thermocouple with the accuracy equal to 0.1 ◦C. The capacity and dielectric loss measurements were carried out using the HP 4284A LCR meter. The frequency of the measuring field was 20 Hz up to 1 MHz. Measurements were performed in regular steps of temperature (each 10 ◦C) at a constant rate of temperature changes and at a constant time of stabilisation. 657 K.Konieczny 200 250 300 350 400 450 0 200 400 600 800 1000 T c ∆ε T( o C) 0,0014 0,0016 0,0018 0,0020 0,0022 -14,0 -13,5 -13,0 -12,5 -12,0 -11,5 -11,0 -10,5 T c ln τ 1/T(1/K) Figure 3. The temperature depen- dence of dispersion step ∆ǫ for B re- laxation. Figure 4. Arrhenius plot of the mean relaxation time τ for B relaxation. 3. Results Two relaxation processes were obtained. Except the weak relaxation process be- low 10 kHz (the same as in the paper [7]) we can see the strong additional relaxation arising below 100 kHz (figure 1). This relaxation shifts itself to lower frequencies, when the temperature decreases. The results were fitted to the Cole-Cole model: ǫ∗ = ǫ∞ + ǫs − ǫ∞ 1 + (iωτ)1−α , where ǫs is the static permittivity at low frequency, ǫ∞ is the permittivity measured above the dispersion region, τ is the mean relaxation time, ω is the angular frequency and α determines the distribution of relaxation times and has got values between 0 and 1. The increase of ǫ′′ towards low frequencies is associated with d.c. conductivity represented by σC and giving a contribution to ǫ∗ in the form: ǫ∗ = ǫ′ + i ( ǫ′′p + σC ωǫ0 ) σC = exp ( − W kT ) . The example of such a fitting for the temperature 360 ◦C is shown in figure 2. From this figure we can distinguish two broad ǫ′′(f) contributions – A (the same as in the paper [7]) and the additional one – B. The parameters of this relaxation are: A – 658 Dielectric relaxation in NaNbO3 ∆ǫ=389, τ = 6.049 ·10−6, and B – ∆ǫ = 550, τ = 1.042 ·10−5 for temperature 360 ◦C (above TC). The temperature dependence of dispersion step ∆ǫ for B-relaxation is presented in figure 3. In the temperature range up to TC ∆ǫ ≈ const, however above the temperature TC dispersion step ∆ǫ increases. The relaxation time in this process does not obey the Arrhenius law above the temperature TC (figure 4). 4. Conclusions It is well known, that the oxygen vacancies can be produced during the crystal growth. Moreover these vacancies can be also produced by annealing the sample in several oxygen atmospheres [8]. In the present paper the increase of the oxygen vacancy concentration was produced by annealing the sample in a lower air pressure atmosphere. The arising of the oxygen vacancies can be equivalent to the creation of the local dipoles. The behaviour of these local dipoles in a.c. electric field leads to the arising of an additional relaxation process in the NaNbO3 in the frequency range of about 100 kHz (curve B in figure 2). This relaxation clearly evolves with temperature (with decreasing of temperature it moves towards lower frequencies). The studies of forming the vacancies and their effect on the behaviour of NaNbO3 requires additional investigations which are now in progress. References 1. Cross L.E., Nicholson B.J. The optical and electrical properties of single crystals of sodium niobate. // Phil. Mag., 1955, vol. 46, p. 453–466. 2. Ahtee M., Glazer A.M., Megaw H.D. The structures of sodium niobate between 480 and 575 ◦C, and their relevance to soft-phonon modes. // Phil. Mag., 1972, vol. 26, No. 4, p. 995–1014. 3. Lefkowitz I., Lukaszewicz K., Megaw H.D. The high-temperature phase of sodium nio- bate and the nature of transitions in pseudosymmetric structure. // Acta Cryst., 1966, vol. 20, p. 670–683. 4. Ishida K., Honjo G. Soft modes and superlattice structure in NaNbO3. // J. Phys. Soc. Japan, 1973, vol. 34, No. 5, p. 1279–1288. 5. Glaser A.M., Megaw H.D. Studies of the parameters and domains in the phase transition of NaNbO3. // Acta Cryst., 1973, vol. A29, p. 489–495. 6. Kus Cz. Dielectric and Semiconductive Properties of NaNbO3. Kraków, WSP, 1991 (in Polish). 7. Konieczny K., Kajtoch Cz. Low-frequency dielectric dispersion in NaNbO3 single crys- tals. // Ferroelectrics, 1998, vol. 215, p.65–73. 8. Molak A. The influence of reduction in valency of Nb ions on the antiferroelectric phase transition in NaNbO3. // Solid State Comm., 1987, vol. 62, No. 6, p. 413–417. 659 K.Konieczny Діелектрична релаксація в монокристалі NaNbO3 К.Конєчни Інститут фізики та обчислювальної техніки, Педагогічний університет, Польща, 30-084 Краків, вул. Подхоронжих, 1 Отримано 31 серпня 1998 р., в остаточному вигляді – 15 грудня 1999 р. Досліджено діелектричну сприйнятливість зразків монокристалу NaNbO3 в діапазонах температур 30–500 ◦C і частот 20 Гц–1 МГц. У цьому температурному проміжку в частотній області поблизу 100 кГц спостерігається релаксаційний процес, що є доповнювальним до ви- явленого раніше процесу [7]. Отримані дані апроксимуються за фор- мулою Коул-Коула. Значення дисперсії ∆ε (максимальне значення ∆ε = 1000) залежить від температури. Закон Арреніуса не виконуєть- ся для середнього часу релаксації τ вище TC. Поява цього релак- саційного процесу може пов’язуватися з кисневими вакансіями. Ключові слова: NaNbO3, монокристал, діелектрична релаксація, кисневі вакансії PACS: 77.22.Ch, 77.22.Gm 660