Ferroelectric phase transition in lead germanate Pb₅Ge₃O₁₁ studied by ESR of Gd³⁺ probe

ESR spectra of Gd³⁺ probe have been studied in the range of ferroelectric phase transition TC=451 K in lead germanate Pb₅Ge₃O₁₁. Measurements of ESR line position have shown that local order parameter behaves in accordance with the mean field theory approach in a broad (∼150 K) temperature interval...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Condensed Matter Physics
Datum:1999
Hauptverfasser: Trubitsyn, M.P., Volnianskii, M.D., Ermakov, A.S., Linnik, V.G.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут фізики конденсованих систем НАН України 1999
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/121015
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Ferroelectric phase transition in lead germanate Pb₅Ge₃O₁₁ studied by ESR of Gd³⁺ probe / M.P. Trubitsyn, M.D. Volnianskii, A.S. Ermakov, V.G. Linnik // Condensed Matter Physics. — 1999. — Т. 2, № 4(20). — С. 677-684. — Бібліогр.: 19 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-121015
record_format dspace
spelling Trubitsyn, M.P.
Volnianskii, M.D.
Ermakov, A.S.
Linnik, V.G.
2017-06-13T12:43:03Z
2017-06-13T12:43:03Z
1999
Ferroelectric phase transition in lead germanate Pb₅Ge₃O₁₁ studied by ESR of Gd³⁺ probe / M.P. Trubitsyn, M.D. Volnianskii, A.S. Ermakov, V.G. Linnik // Condensed Matter Physics. — 1999. — Т. 2, № 4(20). — С. 677-684. — Бібліогр.: 19 назв. — англ.
1607-324X
DOI:10.5488/CMP.2.4.677
PACS: 77.80.B
https://nasplib.isofts.kiev.ua/handle/123456789/121015
ESR spectra of Gd³⁺ probe have been studied in the range of ferroelectric phase transition TC=451 K in lead germanate Pb₅Ge₃O₁₁. Measurements of ESR line position have shown that local order parameter behaves in accordance with the mean field theory approach in a broad (∼150 K) temperature interval below TC. Anomalous line width broadening observed around TC can be associated with a quasi-elastic central peak component of excitation spectrum, observed earlier using a light scattering experiment and attributed to static symmetry-breaking defects.
ЕПР спектри iонiв Gd³⁺ вивчалися в iнтервалi сегнетоелектричного фазового переходу Tc=451 К кристалiв германату свинцю Pb₅Ge₃O₁₁. На пiдставi вимiрювання температурних залежностей положення ЕПР лiнiй показано, що поведiнка локального параметра порядку в досить широкому iнтервалi (∼ 150 К) сегнетоелектричної фази погоджується з теорiєю середнього молекулярного поля. Аномальне розширення резонансних лiнiй, що спостерiгається навколо Tc, може бути зiставлене з вузьким квазi-пружним центральним пiком у спектрах комбiнацiйного розсiяння свiтла i пов’язане зi статичними дефектами кристалічної гратки.
en
Інститут фізики конденсованих систем НАН України
Condensed Matter Physics
Ferroelectric phase transition in lead germanate Pb₅Ge₃O₁₁ studied by ESR of Gd³⁺ probe
Дослiдження методом ЕПР сегнетоелектричного фазового переходу у кристалах германату свинцю Pb₅Ge₃O₁₁:Gd³⁺
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Ferroelectric phase transition in lead germanate Pb₅Ge₃O₁₁ studied by ESR of Gd³⁺ probe
spellingShingle Ferroelectric phase transition in lead germanate Pb₅Ge₃O₁₁ studied by ESR of Gd³⁺ probe
Trubitsyn, M.P.
Volnianskii, M.D.
Ermakov, A.S.
Linnik, V.G.
title_short Ferroelectric phase transition in lead germanate Pb₅Ge₃O₁₁ studied by ESR of Gd³⁺ probe
title_full Ferroelectric phase transition in lead germanate Pb₅Ge₃O₁₁ studied by ESR of Gd³⁺ probe
title_fullStr Ferroelectric phase transition in lead germanate Pb₅Ge₃O₁₁ studied by ESR of Gd³⁺ probe
title_full_unstemmed Ferroelectric phase transition in lead germanate Pb₅Ge₃O₁₁ studied by ESR of Gd³⁺ probe
title_sort ferroelectric phase transition in lead germanate pb₅ge₃o₁₁ studied by esr of gd³⁺ probe
author Trubitsyn, M.P.
Volnianskii, M.D.
Ermakov, A.S.
Linnik, V.G.
author_facet Trubitsyn, M.P.
Volnianskii, M.D.
Ermakov, A.S.
Linnik, V.G.
publishDate 1999
language English
container_title Condensed Matter Physics
publisher Інститут фізики конденсованих систем НАН України
format Article
title_alt Дослiдження методом ЕПР сегнетоелектричного фазового переходу у кристалах германату свинцю Pb₅Ge₃O₁₁:Gd³⁺
description ESR spectra of Gd³⁺ probe have been studied in the range of ferroelectric phase transition TC=451 K in lead germanate Pb₅Ge₃O₁₁. Measurements of ESR line position have shown that local order parameter behaves in accordance with the mean field theory approach in a broad (∼150 K) temperature interval below TC. Anomalous line width broadening observed around TC can be associated with a quasi-elastic central peak component of excitation spectrum, observed earlier using a light scattering experiment and attributed to static symmetry-breaking defects. ЕПР спектри iонiв Gd³⁺ вивчалися в iнтервалi сегнетоелектричного фазового переходу Tc=451 К кристалiв германату свинцю Pb₅Ge₃O₁₁. На пiдставi вимiрювання температурних залежностей положення ЕПР лiнiй показано, що поведiнка локального параметра порядку в досить широкому iнтервалi (∼ 150 К) сегнетоелектричної фази погоджується з теорiєю середнього молекулярного поля. Аномальне розширення резонансних лiнiй, що спостерiгається навколо Tc, може бути зiставлене з вузьким квазi-пружним центральним пiком у спектрах комбiнацiйного розсiяння свiтла i пов’язане зi статичними дефектами кристалічної гратки.
issn 1607-324X
url https://nasplib.isofts.kiev.ua/handle/123456789/121015
citation_txt Ferroelectric phase transition in lead germanate Pb₅Ge₃O₁₁ studied by ESR of Gd³⁺ probe / M.P. Trubitsyn, M.D. Volnianskii, A.S. Ermakov, V.G. Linnik // Condensed Matter Physics. — 1999. — Т. 2, № 4(20). — С. 677-684. — Бібліогр.: 19 назв. — англ.
work_keys_str_mv AT trubitsynmp ferroelectricphasetransitioninleadgermanatepb5ge3o11studiedbyesrofgd3probe
AT volnianskiimd ferroelectricphasetransitioninleadgermanatepb5ge3o11studiedbyesrofgd3probe
AT ermakovas ferroelectricphasetransitioninleadgermanatepb5ge3o11studiedbyesrofgd3probe
AT linnikvg ferroelectricphasetransitioninleadgermanatepb5ge3o11studiedbyesrofgd3probe
AT trubitsynmp doslidžennâmetodomeprsegnetoelektričnogofazovogoperehoduukristalahgermanatusvincûpb5ge3o11gd3
AT volnianskiimd doslidžennâmetodomeprsegnetoelektričnogofazovogoperehoduukristalahgermanatusvincûpb5ge3o11gd3
AT ermakovas doslidžennâmetodomeprsegnetoelektričnogofazovogoperehoduukristalahgermanatusvincûpb5ge3o11gd3
AT linnikvg doslidžennâmetodomeprsegnetoelektričnogofazovogoperehoduukristalahgermanatusvincûpb5ge3o11gd3
first_indexed 2025-11-24T09:58:57Z
last_indexed 2025-11-24T09:58:57Z
_version_ 1850454238795137024
fulltext Condensed Matter Physics, 1999, Vol. 2, No. 4(20), pp. 677–684 Ferroelectric phase transition in lead germanate Pb5Ge3O11 studied by ESR of Gd3+ probe M.P.Trubitsyn, M.D.Volnianskii, A.S.Ermakov, V.G.Linnik Dnipropetrovsk State University, Department of Physics 13 Naukovyi Lane, Dnipropetrovsk, 320625 Ukraine Received November 23, 1998 ESR spectra of Gd3+ probe have been studied in the range of ferroelec- tric phase transition TC=451 K in lead germanate Pb5Ge3O11. Measure- ments of ESR line position have shown that local order parameter behaves in accordance with the mean field theory approach in a broad (∼150 K) temperature interval below TC. Anomalous line width broadening observed around TC can be associated with a quasi-elastic central peak component of excitation spectrum, observed earlier using a light scattering experiment and attributed to static symmetry-breaking defects. Key words: ferroelectric phase transition, electron spin resonance PACS: 77.80.B 1. Introduction Lead germanate Pb5Ge3O11 (PGO) has been the subject of intensive experimen- tal and theoretical studies since the discovery of the structural phase transition from a high temperature paraelectric phase to a polar one at TC=451 K [1, 2]. The crystal structure of PGO monocrystals, studied using neutron and X-ray diffraction [2–4], in non-polar phase corresponds to C1 3h space group and on cooling below TC sponta- neous polarisation emerges along the c-axis of the trigonal C 1 3 structure. The unit cell of PGO contains three formulae units. The structural framework is constructed by alternative layers perpendicular to the polar axis and consisting of single (GeO 4) 4− and paired (Ge2O7) 6− germanium-oxygen tetrahedra connected by predominantly covalent Pb-O bonds [4]. From the microscopic point of view the structural distor- tions at the phase transition can be associated with tilt of (GeO4) 4− tetrahedra, twist of (Ge2O7) 6− pyro- groups and displacements of Pb2+ ions [4]. Besides, the resulting dipolar moment emerges mainly due to (Ge2O7) 6−-groups distortion and Pb2+ ions displacements. Investigations of Raman [5, 6] and submillimetre spec- tra [7] reveal the softening of a low-frequency optic phonon and give evidence in c© M.P.Trubitsyn, M.D.Volnianskii, A.S.Ermakov, V.G.Linnik 677 M.P.Trubitsyn et al. favour of a displacive character of ferroelectric phase transition in PGO crystals. On approaching the transition point from ferrophase above ∼400 K, the soft phonon becomes overdamped, critical dynamics slow down and gain pronounced relaxation features peculiar to an order-disorder scheme of a structural phase transition. In addition to the overdamped soft mode, the central peak emerges in the excitation spectrum of lead germanate. Very refined light scattering experiment, performed in [6], makes it possible to resolve the line shape of the central peak and observe a weakly diverging, relatively broad (∼4 GHz) dynamic central component coexisting with a very narrow (6 2 MHz) quasi-elastic central singularity. Although the mi- croscopic reasons of the observed critical dynamics are not completely clear up to now, it has been assumed that the soft phonon reflects the oscillator type motion of Pb2+ ions whereas relaxation of (GeO4) 4− tetrahedra contributes to a dynamic central peak. The quasi-elastic central component is presumably originated from the frozen-in symmetry-breaking defects [6]. It is well known that magnetic resonance represents highly sensitive experimen- tal techniques giving a unique information regarding static and dynamic phenomena accompanying structural phase transitions [8, 9]. ESR spectra of Gd3+ ions in lead germanate have been reported earlier [10–13]. It has been shown that Gd3+ ions pre- dominantly occupy positions of trigonal point symmetry and substitute Pb 2+ hosts in PGO lattice. Among the fifteen lead ions in the PGO unit cell, six structurally nonequivalent ions are positioned on the third order axis [4]. Theoretical analysis of the Gd3+ spectra, performed in [14] based on the point-charge approximation and superposition model, allows us to assume that gadoliniummost probably substitutes Pb(4) ions in accordance with the earlier conclusions [10]. Since the paramagnetic probe preserves the local symmetry of the host, it may be suggested that the excess charge introduced by the probe is compensated non-locally. The attention in the papers [10–13] was focused mainly on the details of Gd3+ centers localization and possible mechanisms of the paramagnetic probe charge com- pensation. It seems that additional valuable information can be derived by applying the ESR techniques to the study of static and dynamic properties of PGO in the range of ferroelectric phase transition. 2. Theoretical background ESR spectra in the range of structural phase transition can be described by usual spin- Hamiltonian (SH) formalism based on the perturbation theory HFP = HPP +H ′. (1) Here HPP represents hexagonal SH appropriate to C3h local symmetry of the probe in paraelectric phase; H ′-“perturbing” SH which contains trigonal spin operators and describes lowering of the Gd3+ local symmetry at the phase transition [15] H ′ = b34O 3 4 + c34Ω 3 4. (2) 678 Ferroelectric phase transition in lead germanate Parameters of “perturbing” SH H ′ are the functions of the correlated atomic dis- tortions in the range of paramagnetic probe. Consequently near TC the resonance fields can be expanded in powers of the time dependent local order parameter η(t) = 〈η〉+ δη(t) BR(t) = B0 + aη + 1 2 bη2 + ... = B0 + a〈η〉+ 1 2 b〈η2〉+ [ aδη + 1 2 b(η2 − 〈η2〉) ] . (3) Here B0 represents the line position above TC. Expansion coefficients a, b are deter- mined by secular and non-secular matrix elements of SH H ′ correspondingly. Hence parameters a, b depend on the probe site and magnetic field direction with respect to the crystallographic axes. It can be shown that if the local symmetry, accounting for the external magnetic field effect, contains elements destroyed at the phase tran- sition, all odd terms in expansion (3) should vanish. As it has been shown in [10, 11], on cooling below TC the local symmetry of Gd3+ probe reduces from hexagonal C3h to trigonal C3 point group, i.e. the mirror plane perpendicular to polar axis van- ishes in ferroelectric phase. It means, that applying external magnetic field B along or perpendicular to c-axis, one can provide quadratic coupling of resonance fields with the local order parameter (a=0). For general orientation of B, the linear term in expansion (3) becomes non-zero and both terms - linear and quadratic should contribute to resonance fields. 3. Experimental results and discussion 300 400 500 400 450 3 2 1 TC B R (m T ) T (K) Figure 1. Temperature depen- dencies of line positions MS = −5/2β − 7/2 (1), −1/2β − 3/2 (2), −3/2β − 5/2 (3). B ‖ c. PGO monocrystals were grown from the melts by Czhokhralskii method with addition of Gd2O3 (0.01 wt. percent). The samples studied were cut off as parallelepipeds of 3x3x3 mm3 typ- ical dimensions with edges parallel to crystal- lographic axes. ESR spectra were registered by conventional X-band spectrometer. The temper- ature of the samples was regulated by nitrogen gas flow cryostat. ESR spectrum of Gd3+ in ground state (4f 7,8 S7/2), consisting of seven fine structure components ∆MS = ±1, was registered. In para- electric phase the angular variations of spectra reveal C3h local symmetry of active probe site with a third order axis parallel to a unique polar axis c. On cooling below TC for general orien- tations of external magnetic field B the outer fine structure lines MS = ±1/2β±3/2;±3/2β± 5/2;±5/2β ± 7/2 split into doublets in accor- dance with the reducing of the local symmetry 679 M.P.Trubitsyn et al. to C3 group [16] and the emerging of 1800 domains with antiparallel direction of spontaneous polarization. The symmetry of ESR spectra and SH parameters un- doubtedly show that Gd3+ centers studied in this work have got the same nature as the ones investigated earlier in [10, 11]. 300 400 500 380 400 TC-T (K) ∆B R 2 (m T 2 ) T (K) B R (m T ) 0 100 0 100 Figure 2. Line position of MS = −5/2β7/2 at ∠B, c = 44 0,B⊥b in the range of TC=451 K. In the insert: line splitting squared ∆B2 vs (TC − T ). Temperature dependencies of positionsBR(T ) of three high field ESR lines MS = −1/2β − 3/2;−3/2β−5/2;−5/2β−7/2, measured at ori- entation B ‖ c, are plotted in figure 1. It can be seen that in the paraelectric phase, reso- nance lines linearly shift to high field side due to the lattice contraction effect. Below TC, line positions change their behaviour. Experimental points deviate from dashed lines extrapolating to ferroelectric phase the thermal drift of line po- sition B0 above TC. In accordance with simple theoretical description briefly given above, the static part of expansion (3) determines the shift of the line position induced by the local order parameter. For main orientation B ‖ c the lin- ear term in (3) is forbidden by symmetry. So, the experimental data, represented in figure 1, can be described by BR = B0 + 1 2 b〈η〉2, (4) with accounting of the B0 thermal drift above TC and ignoring negligible fluctuation contributions, i.e. assuming 〈η2〉 = 〈η〉2. It is clear, that devi- ation of experimental points from dashed lines (figure 1) results from the contribution of the local order parameter squared with negative parameter b < 0 (4). From figure 1 it can be seen that experimental de- pendencies can be satisfactorily described by the straight lines [B0(T )− BR(T )] ∼ 〈η〉2 ∼ (TC − T ) in accordance with the mean field theory approach. Naturally the line position should be more sensitive to a local order parameter magnitude for general orientations of the external magnetic field, allowing non-zero linear term in expansion (3). The experimental dependency of MS = −5/2β − 7/2 line position at ∠B, c = 44 0,B⊥b is presented in figure 2. Single ESR line slightly shifts to high fields and below TC splits into two components, resulting from nonzero value of the local order parameter ±〈η〉. In accordance with (3), positions of the splitted components are given by BR1,R2 = B0 ± a〈η〉+ 1 2 b〈η〉2. (5) From this expression it follows that the distance between components of doublet is proportional to the first order of local order parameter 680 Ferroelectric phase transition in lead germanate 300 400 500 1 2 TC δB ( m T ) T (K) 2 1 Figure 3. Temperature depen- dencies of line width MS = −3/2β − 5/2 (1), −5/2β − 7/2 (2). B ‖ c. 300 400 500 2 4 T (K) δB (m T ) Figure 4. Anomalous line width broadening. MS = −5/2β− 7/2, ∠B, c = 44 0,B⊥b. ∆B = BR1 − BR2 = 2a〈η〉. In the vicinity of transition point 448÷451 K the line splitting is masked by anomalous line width broadening and line position determination de- mands a more refine analysis of the spectral con- tour. Excluding this temperature interval, least square fitting of equation (5) to experimental da- ta gives the value of transition point of 450.5 K. Fitting the line splitting ∆B vs (TC − T ) in a double logarithmic scale gives for TC the value of 451.4 K. Hence TC=451 K can be accepted as experimentally measured transition point with ± 0.5 K uncertainty. Squared line splitting ∆B 2 vs (TC−T ) is plotted in the insert to figure 2. It is quite clear that experimental points well cor- respond to the straight line up to (TC−T ) ∼ 150 K, confirming the classic behaviour of the local order parameter 〈η〉 ∼ (TC − T )1/2. Besides the line positions, width of ESR lines demonstrates pronounced anomaly in the range of TC. Temperature dependencies of peak to peak line width for MS = −3/2β − 5/2;−5/2β − 7/2 at B ‖ c are presented in figure 3. Weak but distinctly visible anomalies of line width can be seen around TC. These anomalies result from the local order parameter fluctuations and can be described by the time dependent part of reso- nance fields expansion (3). Since for the main orientation B ‖ c, linear term in (3) is forbid- den by symmetry, detected anomalies can be at- tributed to the quadratic term originated from two-phonon relaxation processes. Weakness of line width increasing for B ‖ c does not make it possible to analyze the anomalies quantitatively. Temperature dependence of MS = −5/2β − 7/2 line width, measured at general orientation (∠B, c = 44 0,B⊥b), is depicted in the figure 4. A well pronounced λ- shaped anomaly has been observed around TC. Line width δB increases from ∼ 2.0 mT at 523 K to ∼ 3.8 mT closely to transition point. Anomalous line width broadening is accompanied by changes of line shape and results exceptionally from increasing of the gaussian component [17]. It can be seen that in ferroelectric phase both splitted components have got different widths on cooling away from TC. As it has been shown above for general orientation chosen, coupling between resonance fields and local order parameter (3) is dominated by a 681 M.P.Trubitsyn et al. linear term. Critical contribution to the line width can be expressed through the resonance line second moment δB2 CR = 4(〈B2 R〉 − 〈BR〉 2) ∼ (a± b〈η〉)2 ∑ q 〈δη2q〉. (6) Since ESR measures the local properties of the probe, the sum in (6) gets over fluctuations with all wave vectors within Brillouin zone. Hence, pronounced line width broadening reflects the critical divergence of the order parameter susceptibil- ity, connected with mean square fluctuations by fluctuation-dissipation theorem. As it can be seen from the factor (a ± b〈η〉)2 before the sum in (6), different widths of two splitted components below TC may arise from the second order term contri- bution. Inhomogeneous gaussian character of line width broadening gives evidence that order parameter fluctuations, contributing to line width anomalies, are slow in comparison with the frequency analogue of the background non-critical ESR line width ∼ 30 MHz. 4. Conclusions Lead germanate undergoes ferroelectric phase transition with the emerging of spontaneous polarization along the unique trigonal axis. Hence it belongs to the universality class of the systems with one-component polar order parameter where long-range dipole-dipole interactions predetermine applicability of mean field theory around transition point [18]. In agreement with this assertion, ESR line position data of Gd3+ probe demonstrate classic behaviour of the local order parameter in a broad temperature interval of ferroelectric phase. Anomalous line width broadening, observed for general orientations of exter- nal magnetic field around TC, is determined by increasing of inhomogeneous gaus- sian component. It may be concluded, that critical line width is contributed by quasi-static order parameter fluctuations with frequencies less than ∼ 30 MHz. De- tailed measurements of the Gd3+ line width anisotropy, performed recently in [19], have shown that the main contribution to line width involve triclinic spin operators (b12O 1 2+c12Ω 1 2) by contrast to trigonal symmetry of the “perturbing” SH H ′ (2), which determines line splitting in ferroelectric phase. Authors of [19] have assumed that triclinic anisotropy of the critical line width results from the non-local charge com- pensators statistically positioned relative to the paramagnetic ion location. Perhaps that anisotropy of line width is not necessarily to connect with non-local charge compensators but it is quite sufficient to consider a possible influence of symmetry- breaking defects of any sort. It seems that the observed features of ESR line width broadening may be associated with a very narrow elastic central peak component, detected in light scattering experiment [6] and presumably originated from frozen-in symmetry-breaking defects. Obviously the range of influence of such defects becomes infinitely large as the correlation length diverges on approaching TC and anisotropy of ESR critical line width could be reduced. 682 Ferroelectric phase transition in lead germanate References 1. Nanamatsu S., Sugiyama H., Doi K., Kondo Y. Ferroelectricity in Pb5Ge3O11. // J. Phys. Soc. Japan, 1971, vol. 31, No. 2, p. 616. 2. Iwata Y., Koizumi H., Koyano N. Crystal structure determination of ferroelectric phase of 5PbO·3GeO2. // J. Phys. Soc. Japan, 1973, vol. 35, No. 1, p. 314. 3. Iwata Y., Koyano N., Shibuya I. Neutron diffraction studies of ferroelectric 5PbO·3GeO2 above the Curie point. // J. Phys. Soc. Japan, 1973, vol. 35, No. 4, p. 1269. 4. Iwata Y. Neutron diffraction study of the structure of ferroelectric phase of Pb5Ge3O11. // J. Phys. Soc. Japan, 1977, vol. 43, No. 3, p. 961–967. 5. Lockwood J.J., Arthur J.W., Taylor W., Hosea T.J. Observation of a central peak in lead germanate by light scattering. // Solid State Comm., 1976, vol. 20, p. 703–706. 6. Lyons K.B., Fleury P.A. Light-scattering investigation of the ferroelectric transition in lead germanate. // Phys.Rev. B, 1978, vol. 17, No. 6, p. 2403–2419. 7. Kozlov V.G., Lebedev S.P., Minaev A.A., Volkov A.A., Monia V.G., Sinyakov E.V. Dielectric dispersion of KH2PO4 and Pb5Ge3O11 crystals at frequencies of 6–12 cm−1. // Ferroelectrics, 1978, vol. 21, p. 373–375. 8. Muller K.A., Fayet J.C. Structural phase transitions studied by electron spin res- onance. – In: Structural Phase Transitions II (Ed. by K.A. Muller & H.Thomas). Springer-Verlag-Berlin, 1991, vol. 45, p. 1–82. 9. Borsa F., Rigamonti A. Comparison of NMR and NQR studies of phase transitions in disordered and ordered crystals. – In: Structural Phase Transitions II (Ed. by K.A. Muller & H.Thomas). Springer-Verlag-Berlin, 1991, vol. 45, p. 83–175. 10. Sherstkov Yu.A., Cherepanov V.I., Vazhenin V.A., Zolotareva K.M., Rumyuantsev E.L. Investigation of gadolinium EPR spectra in lead germanate crystals. // Izv. AN SSSR ser. fiz., 1975, vol. 39, No. 4, p. 710–713 (in Russian). 11. Gorlov A.D., Sherstkov Yu.A., Vazhenin V.A. Structure of trigonal center of Gd3+ ion in Pb5Ge3O11. // Solid State Phys. (USSR), 1978, vol. 20, No. 9, p. 2834–2837 (in Russian). 12. Vazhenin V.A., Starichenko K.M., Gur’ev A.V., Levin L.I., Musalimov F.M. Locali- sation and motion of halogen ions in channels of lead germanate structure. // Solid State Phys. (USSR), 1987, vol. 29, No. 2, p. 409–414 (in Russian). 13. Vazhenin V.A., Starichenko K.M. Dipolar centers Gd3+-O2− i in lead germanate. // Solid State Phys. (USSR), 1987, vol. 29, No. 8, p. 2530–2531 (in Russian). 14. Typek J. Electron paramagnetic resonance of gadolinium in a single crystal of lead germanate. // Acta Physica Polonica, 1979, vol. A55, No. 6, p. 795–802. 15. Al’tshuler S.A., Kozyrev B.M. Electron paramagnetic resonance of transition groups elements. Moscow, Nauka, 1972, p. 116–128 (in Russian). 16. Meil’man M.L., Samoilovich M.I. Introduction to the EPR spectroscopy of activated monocrystals. Moscow, Atomizdat, 1977, p. 200–265 (in Russian). 17. Trubitsyn M.P., Bajsa D.F., Volnianskii M.D., Kuz’menko T.L. ESR Study of Gd3+ ions in ferroelectric Pb5Ge3O11. – In: Abstr. Book, 3-rd Polish-Ukrainian Meeting on Ferroelectric Physics, Poland (Kudowa), 1996. 18. Bruce A.D., Cowley R.A. Structural Phase Transitions. // London, Taylor, Francis Ltd, 1981. 19. Vazhenin V.A., Rumyantsev V.L., Artemov M.Yu., Starichenko K.M. Mechanisms of 683 M.P.Trubitsyn et al. EPR spectrum broadening in Pb5Ge3O11 near structural transition. // Solid State Phys. (Russia), 1998, vol. 40, No. 2, p. 321–326 (in Russian). Дослiдження методом ЕПР сегнетоелектричного фазового переходу у кристалах германату свинцю Pb5Ge3O11:Gd3+ М.П.Трубiцин, М.Д.Волнянський, А.С.Ермаков, В.Г.Лiннiк Днiпропетровський державний унiверситет, фiзичний факультет 320625 Днiпропетровськ, пров. Науковий, 13 Отримано 23 листопада 1998 р. ЕПР спектри iонiв Gd3+ вивчалися в iнтервалi сегнетоелектричного фазового переходуTc=451 К кристалiв германату свинцю Pb5Ge3O11. На пiдставi вимiрювання температурних залежностей положення ЕПР лiнiй показано, що поведiнка локального параметра порядку в досить широкому iнтервалi (∼ 150 К) сегнетоелектричної фази по- годжується з теорiєю середнього молекулярного поля. Аномальне розширення резонансних лiнiй, що спостерiгається навколоTc, може бути зiставлене з вузьким квазi-пружним центральним пiком у спек- трах комбiнацiйного розсiяння свiтла i пов’язане зi статичними де- фектами кристалічної гратки. Ключові слова: сегнетоелектричний фазовий перехiд, електронний парамагнiтний резонанс PACS: 77.80.B 684