Manifestations of the electron orbital moment in high-frequency properties of ferroelectrics with 3d-ions
A phenomenological theory of high-frequency properties of ferroelectric and ferroelectric-ferromagnet with the 3d-ions has been elaborated based on the separate accounting for spin and orbital electron moments, electron and ion contributions to electric polarization. In the ferroelectric state, t...
Gespeichert in:
| Veröffentlicht in: | Condensed Matter Physics |
|---|---|
| Datum: | 1999 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут фізики конденсованих систем НАН України
1999
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/121019 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Manifestations of the electron orbital moment in high-frequency properties of ferroelectrics with 3d-ions / I.E. Chupis // Condensed Matter Physics. — 1999. — Т. 2, № 4(20). — С. 745-753. — Бібліогр.: 8 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-121019 |
|---|---|
| record_format |
dspace |
| spelling |
Chupis, I.E. 2017-06-13T12:45:12Z 2017-06-13T12:45:12Z 1999 Manifestations of the electron orbital moment in high-frequency properties of ferroelectrics with 3d-ions / I.E. Chupis // Condensed Matter Physics. — 1999. — Т. 2, № 4(20). — С. 745-753. — Бібліогр.: 8 назв. — англ. 1607-324X DOI:10.5488/CMP.2.4.745 PACS: 78.20.Ls https://nasplib.isofts.kiev.ua/handle/123456789/121019 A phenomenological theory of high-frequency properties of ferroelectric and ferroelectric-ferromagnet with the 3d-ions has been elaborated based on the separate accounting for spin and orbital electron moments, electron and ion contributions to electric polarization. In the ferroelectric state, the existence of the electron orbital moment leads to the breaks in the temperature dependencies of the transverse components of dielectric susceptibility at the ferroelectric transition temperature. The values of these breaks are proportional to the square of the electron part of spontaneous polarization and the parameter of freezing of the orbital moment. Similar breaks and the decrease of the phonon frequencies in the ferroelectric state should occur in the modes which are not soft. Besides, the effect of induction of high-frequency orbital moment by electron part of electric polarization has been predicted as well. This effect would lead to the break in the temperature dependence of paramagnetic susceptibility at ferroelectric transition temperature. In the ferroelectromagnetic state, the electron orbital moment also manifests itself in λ increase of magnetoelectric gyration ( λ is the constant of spin-orbital interaction). Побудована феноменологічна теорія високочастотних властивостей сегнетоелектрика і сегнетоелектрик-феромагнетика з 3d-іонами, яка грунтується на розділеному врахуванні спінового і орбітального електронних моментів, електронних та іонних вкладів до електричної поляризації. У сегнетоелектричному стані існування електронного орбітального момента приводить до розривів поперечних компонент діелектричної сприйнятливості при температурі сегнетоелектричного переходу. Величини цих розривів пропорціональні до квадрата електронної частини спонтанної поляризації і параметра замороження орбітального момента. Аналогічні розриви і зменшення фононних частот у сегнетоелектричному стані мають спостерігатися в модах, які не є м’якими. Крім того, передбачено ефект індукції високочастотного орбітального момента на електронну частину поляризації. Цей ефект може приводити до розриву парамагнітної сприйнятливості при температурі сегнетоелектричного переходу. У фероелектромагнітному стані електронний орбітальний момент проявляє себе в λ зростанні магнітоелектричної гірації ( λ є постійна спін- орбітальної взаємодії). This research was supported by INTAS Grant No. 94-935. en Інститут фізики конденсованих систем НАН України Condensed Matter Physics Manifestations of the electron orbital moment in high-frequency properties of ferroelectrics with 3d-ions Прояви електрон-орбітального моменту у високочастотних властивостях сегнетоелектриків з 3d-іонами Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Manifestations of the electron orbital moment in high-frequency properties of ferroelectrics with 3d-ions |
| spellingShingle |
Manifestations of the electron orbital moment in high-frequency properties of ferroelectrics with 3d-ions Chupis, I.E. |
| title_short |
Manifestations of the electron orbital moment in high-frequency properties of ferroelectrics with 3d-ions |
| title_full |
Manifestations of the electron orbital moment in high-frequency properties of ferroelectrics with 3d-ions |
| title_fullStr |
Manifestations of the electron orbital moment in high-frequency properties of ferroelectrics with 3d-ions |
| title_full_unstemmed |
Manifestations of the electron orbital moment in high-frequency properties of ferroelectrics with 3d-ions |
| title_sort |
manifestations of the electron orbital moment in high-frequency properties of ferroelectrics with 3d-ions |
| author |
Chupis, I.E. |
| author_facet |
Chupis, I.E. |
| publishDate |
1999 |
| language |
English |
| container_title |
Condensed Matter Physics |
| publisher |
Інститут фізики конденсованих систем НАН України |
| format |
Article |
| title_alt |
Прояви електрон-орбітального моменту у високочастотних властивостях сегнетоелектриків з 3d-іонами |
| description |
A phenomenological theory of high-frequency properties of ferroelectric
and ferroelectric-ferromagnet with the 3d-ions has been elaborated based
on the separate accounting for spin and orbital electron moments, electron
and ion contributions to electric polarization. In the ferroelectric state, the
existence of the electron orbital moment leads to the breaks in the temperature dependencies of the transverse components of dielectric susceptibility
at the ferroelectric transition temperature. The values of these breaks are
proportional to the square of the electron part of spontaneous polarization
and the parameter of freezing of the orbital moment. Similar breaks and
the decrease of the phonon frequencies in the ferroelectric state should
occur in the modes which are not soft. Besides, the effect of induction of
high-frequency orbital moment by electron part of electric polarization has
been predicted as well. This effect would lead to the break in the temperature dependence of paramagnetic susceptibility at ferroelectric transition
temperature. In the ferroelectromagnetic state, the electron orbital moment
also manifests itself in λ increase of magnetoelectric gyration ( λ is the
constant of spin-orbital interaction).
Побудована феноменологічна теорія високочастотних властивостей
сегнетоелектрика і сегнетоелектрик-феромагнетика з 3d-іонами,
яка грунтується на розділеному врахуванні спінового і орбітального
електронних моментів, електронних та іонних вкладів до електричної поляризації. У сегнетоелектричному стані існування електронного орбітального момента приводить до розривів поперечних компонент діелектричної сприйнятливості при температурі сегнетоелектричного переходу. Величини цих розривів пропорціональні до квадрата електронної частини спонтанної поляризації і параметра замороження орбітального момента. Аналогічні розриви і зменшення фононних частот у сегнетоелектричному стані мають спостерігатися в
модах, які не є м’якими. Крім того, передбачено ефект індукції високочастотного орбітального момента на електронну частину поляризації. Цей ефект може приводити до розриву парамагнітної сприйнятливості при температурі сегнетоелектричного переходу. У фероелектромагнітному стані електронний орбітальний момент проявляє
себе в λ зростанні магнітоелектричної гірації ( λ є постійна спін-
орбітальної взаємодії).
|
| issn |
1607-324X |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/121019 |
| citation_txt |
Manifestations of the electron orbital moment in high-frequency properties of ferroelectrics with 3d-ions / I.E. Chupis // Condensed Matter Physics. — 1999. — Т. 2, № 4(20). — С. 745-753. — Бібліогр.: 8 назв. — англ. |
| work_keys_str_mv |
AT chupisie manifestationsoftheelectronorbitalmomentinhighfrequencypropertiesofferroelectricswith3dions AT chupisie proâvielektronorbítalʹnogomomentuuvisokočastotnihvlastivostâhsegnetoelektrikívz3díonami |
| first_indexed |
2025-11-25T22:54:34Z |
| last_indexed |
2025-11-25T22:54:34Z |
| _version_ |
1850575735913185280 |
| fulltext |
Condensed Matter Physics, 1999, Vol. 2, No. 4(20), pp. 745–753
Manifestations of the electron orbital
moment in high-frequency properties of
ferroelectrics with 3d-ions
I.E.Chupis
B.I.Verkin Institute For Low Temperature Physics & Engineering
of National Academy of Sciences of Ukraine,
47 Lenin Ave., 310164 Kharkiv, Ukraine
Received June 28, 1998
A phenomenological theory of high-frequency properties of ferroelectric
and ferroelectric-ferromagnet with the 3d-ions has been elaborated based
on the separate accounting for spin and orbital electron moments, electron
and ion contributions to electric polarization. In the ferroelectric state, the
existence of the electron orbital moment leads to the breaks in the tempera-
ture dependencies of the transverse components of dielectric susceptibility
at the ferroelectric transition temperature. The values of these breaks are
proportional to the square of the electron part of spontaneous polarization
and the parameter of freezing of the orbital moment. Similar breaks and
the decrease of the phonon frequencies in the ferroelectric state should
occur in the modes which are not soft. Besides, the effect of induction of
high-frequency orbital moment by electron part of electric polarization has
been predicted as well. This effect would lead to the break in the temper-
ature dependence of paramagnetic susceptibility at ferroelectric transition
temperature. In the ferroelectromagnetic state, the electron orbital moment
also manifests itself in λ increase of magnetoelectric gyration ( λ is the
constant of spin-orbital interaction).
Key words: electron, orbital, moment, ferroelectric, susceptibility
PACS: 78.20.Ls
1. Introduction
In the 3d-dielectric, electrons of the 3d-shell have a weaker connection with the
core than the rest electrons. This permits us to separately consider the contributions
to the electric polarization from the 3d-electrons and from the rest part of the ion.
The contribution of the 3d-electrons to electric polarization is essential[1]. The elec-
tron orbital moment of the 3d-ions in crystals is strongly frozen and its contribution
to the total magnetic moment is small. A nonzero value of the orbital moment is
due to a small spin-orbital interaction and makes up some percent out of the total
c© I.E.Chupis 745
I.E.Chupis
moment. A small spin-orbital interaction in the 3d-ions permits to consider spin
and orbital moments of the electron separately [2,3]. Thus there is a possibility to
analyze the role of the electron orbital moment in forming high-frequency properties
of ferroelectrics (FE) with the 3d-ions.
In the present paper a phenomenological theory of high-frequency properties of
FE and ferroelectric-ferromagnet with the 3d-ions has been elaborated. The expres-
sions obtained for the susceptibilities and spectrum contain characteristics of the
electron spectrum, i.e. a spin-orbital interaction constant λ and the parameter of
the hardness of freezing of the orbital moment. The existence of the electron orbital
moment leads to the breaks in the temperature dependencies of the components of
dielectric susceptibility in the directions perpendicular to the spontaneous polariza-
tion at FE transition temperature. The values of these breaks are proportional to
the square of the electron polarization and the parameter of freezing of the orbital
moment. Besides,the breaks and the decrease of the frequencies in FE state should
be in the modes which are not soft. The induction of high-frequency orbital moment
by the electron part of electric polarization has been predicted as well. In the fer-
roelectromagnetic state, the electron orbital moment displays itself in λ -increase of
magnetoelectric (ME) gyration[4].
2. Hamiltonian and excitations
Within the phenomenological theory a ferroelectric-ferromagnet can be described
by densities of spin S(r), electron orbital L(r), ion electric P i(r), and electron elec-
tric Pe(r) dipole moments as well as by densities of ion Π i(r) and electron Πe(r)
momenta. To avoid too cumbersome expressions, an ion orbital moment which is
much smaller than that of an electron is not taken into account here. The operators
with the following nonzero commutation relations [5] correspond to the mentioned
variables, i.e.
[Ŝk(r), Ŝm(r
′)] = iǫkmnŜn(r)δ(r− r′),
[L̂k(r), M̂m(r
′)] = iǫkmnδ(r− r′)M̂n(r), M̂ = L̂, P̂e, Π̂e , (1)
[P̂sk(r), Π̂sm(r
′)] = iqs∆kmδ(r− r′), s = i, e,
qe = e~v−1
0 , qi = ei~v
−1
0 .
Here indices k, m, n number the vector projections, ∆km is the Kroneker symbol; v0 is
the volume of an elementary cell; e and ei are electron and ion charges, respectively.
Hamiltonian of a ferroelectric-ferromagnet crystal which is taken uniaxial, to
be specific,(though it is not of fundamental importance) in external electric e and
magnetic h fields is written in the form:
Ĥ =
∫
[Ĥm(r) + Ĥe(r) + Ĥem(r)]dr,
Ĥm = −
b
2
Ŝ2
z +
α
2
Ŝ′
2
xk
− µ0h(L̂+ 2Ŝ)
746
Manifestations of orbital moment in ferroelectrics
+
r‖
2
L̂2
z +
r⊥
2
(L̂2
x + L̂2
y) +
λ1
2
L̂′
2
xk
+ λL̂Ŝ,
Ĥe = −
k1
2
P̂ 2
iz +
k2
2
(P̂ 2
ix + P̂ 2
iy) +
δ
4
P̂ 4
iz +
ζ
2
P̂′
2
ix
k
(2)
−
q1
2
P̂ 2
ez +
q2
2
(P̂ 2
ex + P̂ 2
ey) +
ξ
2
P̂′
2
ex
k
+ v1P̂ezP̂iz
+ v2(P̂exP̂ix + P̂eyP̂iy) +
1
2fe
Π̂2
e +
1
2fi
Π̂2
i − e(P̂i + P̂e),
Ĥem = σ(P̂i + P̂e) · [Π̂e × (L̂+ 2Ŝ)].
In Hamiltonian Ĥm the first term is the energy of spin-dipole interaction; the terms
with coefficients r‖ and r⊥ derived from Coulomb interactions and r‖,r⊥ are called
the parameters of hardness of freezing of the orbital moment [3]; λ is the constant of
spin-orbital interaction; µ0 is the Bohr magneton. The terms with coefficients v1 and
v2 in electrodipole energy operator Ĥe describe the interaction of the electric dipole
moment of the electrons of the 3d-shell Pe with the dipole moment of an ion core
Pi.The terms containing operators of momenta Π̂e, Π̂i are the density operators of
electron and ion kinetic energies, and the constants fe, fi are proportional to electron
and ion masses, respectively. ME energy (the last term Ĥem in (2)) is of dynamic
nature. This is the energy of electric polarization in an effective electric field E ef
formed by the electron moving with the velocity v in an internal magnetic field with
induction B, Eef = −c−1v × B, c is the light velocity. In our case v = Πev0m
−1
e
(me is the effective electron mass), B = 4πµ0(L + 2S). Therefore, for a constant σ
in (2) one can obtain
σ = 4πµ0v0(mec)
−1. (3)
The indicated ME energy is the scalar, i.e. it is present in the energy of a crystal of
any symmetry. The potential ME energy (see, for instance, [2]) for the ground state
considered below leads merely to the inessential renormalization of the constants in
(2) and here this energy is omitted.
According to modern views a FE transition is a special case of structural phase
transition. The displacement of the ionic core from the equilibrium position is ac-
companied by deformation of the 3d-shell, i.e. by electron polarization. It is assumed
here that magnetic ordering arises in a spin subsystem, and due to spin-orbital inter-
action it magnetizes the orbital moments thus creating an average orbital moment
L0 which differs from zero. All equilibrium moments (S 0,L0,Poi,Poe) are considered
to be directed along the easy axis Z of a crystal. Their magnitudes determined by
minimization of homogeneous energy which corresponds to Hamiltonian (2) are as
follows:
L0 = −λr−1
‖ S0, Peo = v1q
−1
1 Pio, P 2
io = δ−1(k1 − v21q
−1
1 ), (4)
where v21 6 k1q1; δ, r‖, r⊥, b, k1, k2, q1, q2 are positive.
To find a linear response of a ferroelectric-ferromagnet to an external electro-
magnetic field (e,h) a quantum-mechanical equation of motion for an operator
∂â/∂t = i~−1[Ĥ, â] is used.Taking a ∼ exp [i(kr− ǫt~−1] (k is the wave vector)
747
I.E.Chupis
and using (1) and (2), in a linear approximation over small deviations of moments
from equilibrium values,one can obtain the following equations
(L0Ao − ǫ)l+ + c2Poep
+
e + v2Poep
+
i + λL0s
+ − iσ0π
+
e = Poee
+ + µ0L0h
+,
(A− ǫ)s+ + λS0l
+ + 2iσS0P0π
+
e = 2µ0S0h
+,
Ā0Poel
+ + λ̄Poes
+ + (ǫ− ǫσ)p
+
e − ǫσp
+
i − iqef
−1
e π+
e = µ0Poeh
+,
(ǫ2 − ǫ2⊥i)p
+
i − v2Qip
+
e − iǫσqif
−1
i π+
e = −Qie
+,
c2p
+
e + v2p
+
i + i(ǫσ − ǫ)q−1
e π+
e = e+, (5)
(ǫ2 − ǫ2zi)pzi − v1Qipze = −Qiez,
(ǫ2 − ǫ2ze)pze − v1Qepzi = −Qeez,
πni = −iǫfiq
−1
i pni, n = x, y, z.
Here
M+ = Mx + iMy, A0 = r⊥ + λ1k
2, Ā0 = A0 + σqe(1 + q1v
−1
1 ),
A = S0(b+ λ2r−1
‖ + αk2), Cn = qn + ξk2, n = 1, 2, (6)
B1 = −k1 + 3δP 2
0i + ζk2, B2 = k2 + ζk2, σ0 = σ(L0Pi0 − 2S0Peo),
ǫσ = σqeI0, I0 = L0 + 2S0, P0 = Poi + Poe, λ̄ = λ+ l2σqe(1 + q1v
−1
1 ),
ǫ2zi = QiB1, ǫ2i⊥ = QiB2, ǫ2ze = QeC1, Qi = q2i f
−1
i , Qe = q2ef
−1
e .
Equations for M− = Mx − iMy are obtained from equations (5) by the complex
conjugation and the change of ǫ by (−ǫ).
Two last equations in (5) describe Z-components of excitations of the electron
and the ion polarizations which in a linear approximation are not connected with
the rest of the variables. Spectral branches ǫz(1,2) where
ǫ2z(1,2) =
1
2
[ǫ2zi + ǫ2ze ∓
√
(ǫ2ze − ǫ2zi)
2 + 4QiQev
2
1], (7)
correspond to these excitations. Electron dielectric susceptibility χ e
zz = ∂Pze/∂ez
and ionic dielectric susceptibility χ i
zz = ∂Pzi/∂ez are as follows:
χe
zz = −Qe(ǫ
2 − ǫ2zi + v1Qi)(ǫ
2 − ǫ2z1)
−1(ǫ2 − ǫ2z2)
−1, (8)
χi
zz = −Qi(ǫ
2 − ǫ2ze + v1Qe)(ǫ
2 − ǫ2z1)
−1(ǫ2 − ǫ2z2)
−1.
As the constants fe and fi are proportional to electron (me) and ion (mi) masses,
respectively, then the ratio of frequencies (ω = ~
−1ǫ) of electron and ion excitations
(7) is of the order of ωe/ωi ∼ (mi/me)
1/2 ≫ 1. The lower branch of the spectrum
is practically a branch of ion excitations, and the upper one corresponds to elec-
tron excitations. Using equations (4), (6) and (7) it is easy to see that at FE phase
transition (P0 = 0), the activation energy of the lower branch ǫz1 turns to zero. The
“twinning law” is fulfilled for the total static FE susceptibility χ zz = χi
zz + χe
zz. If
v1 = 0 in expressions (8), then for static susceptibilities from (7) and (8) one finds
748
Manifestations of orbital moment in ferroelectrics
χe
zz(0) = C−1
1 , χi
zz(0) = B−1
1 . In the frequency range ωe ≫ ω, the electron suscep-
tibility changes slightly (as compared to χe
zz(0)) while the ion susceptibility is of
resonance behaviour near ωz1. At v1 6= 0 both ion and electron susceptibilities are
of resonance behaviour near ωz1. At high frequencies ω ≫ ωi, the electron suscepti-
bility is (ωe/ωi)
2 times larger than the ion susceptibility. At these frequencies, χe
zz
being far from resonance has got the same order of magnitude as in a static case.
Excitations of the components of moments perpendicular to their equilibrium
direction, namely, to the axis Z, are connected with each other. From equations (5)
one can obtain expressions for generalized susceptibility,i.e. electric χnk = ∂Pn/∂ek,
magnetic xnk = µ0∂In/∂hk, magnetoelectric αme
nk = µ0∂In/∂ek, α
em
nk = ∂Pn/∂hk,
where P = Pi +Pe, I = L + 2S. In the absence of damping αem
nk = (αme
kn )
⋆.
The total expressions for susceptibilities are too cumbersome and it is convenient
to analyze them for different states of the system.
3. Ferroelectric state
If a spontaneous magnetic moment isn’t present, (S0 = L0 = 0), and P0 6= 0,
then there are four branches of excitations, namely, ǫz1, ǫz2 (7) and optical ion and
electron excitations p⊥ in the basic plane with the energies ǫoi, ǫoe respectively. The
spectrum is degenerated, i.e.the excitations px and py have the same energy and are
of oscillation character. The energies ǫoi and ǫoe determined from equations (5) are
as follows:
ǫ2o(i,e) =
1
2
[ǫ2i⊥ + ǫ2e⊥ ∓
√
(ǫ2e⊥ − ǫ2i⊥)
2 + 4QiQ̄ev
2
2 ]. (9)
Here ǫ2e⊥ = C2Q̄e , where Q̄e = Qe − Ā0P
2
oe.
As ǫe⊥ ≫ ǫi⊥ we obtain approximately
ǫ2oi ≈ Qi(C1 − v22C
−1
2 ), ǫ2oe ≈ ǫ2e⊥ ≈ C2(Qe − Ā0P
2
oe). (10)
In FE state in the energy of transverse electron mode ǫe⊥ (10) the term appears
which is proportional to the square of the electron part of polarization and the
parameter of freezing of orbital moment since Ā0(k = 0) = r⊥ > 0. This means
the decrease and the break in the temperature dependence of transverse electron
frequency which is not soft at FE transition.
Transverse components of ion χi
nk and electron χe
nk dielectric susceptibilities are
as follows:
χi
xx = χi
yy = −QiD(ǫ2 − ǫ2e⊥ + v2Q̄e), (11)
D = (ǫ2 − ǫ2oi)
−1(ǫ2 − ǫ2oe)
−1,
χe
xx = χe
yy = −Q̄eD(ǫ2 − ǫ2i⊥ + v2Qi).
One sees from (11) that transverse components of dielectric susceptibilities as well as
the frequency have got breaks at FE transition temperature. The break magnitude
will have the largest value at high frequencies ω ∼ ωe,
∆χe
xx = χe
− − χe
+ = Ā0P
2
0eǫ
2(ǫ2 − ǫ2e⊥)
−2, (12)
749
I.E.Chupis
where ∆χ is the difference between the susceptibility (χe
+) above FE transition tem-
perature Te extrapolated to T 6 Te and the susceptibility χe
− below Te. According to
the order of magnitude Ā0 ∼ ǫe , thus ∆χ ∼ P 2
0eǫ
−1
e . An experimental measurement
of the mentioned breaks could help to evaluate the parameters P0e and r⊥.
As it follows from the first equation in (5) excitations of electric polarizationp⊥ at
P0 6= 0 are accompanied by excitations of an orbital moment l⊥, i.e. high-frequency
linear ME effect takes place [4]. This effect is characterized by a nondiagonal com-
ponent of ME susceptibility
αem
xy = −iǫµ0P0e(ǫ
2 − ǫ2i⊥ + v2Qi)(ǫ
2 − ǭ20i)
−1)(ǫ2 − ǭ2oe)
−1. (13)
Besides, the orbital magnetic susceptibility which is proportional to the square of
electron spontaneous polarization is induced:
x0
xx = x0
yy = µ2
0P
2
0e[C2(ǫ
2 − ǫ2i⊥) + v22Qi](ǫ
2 − ǭ2oi)
−1(ǫ2 − ǭ2oe)
−1. (14)
The effect of induction of the orbital magnetic susceptibility in a FE state should be
accompanied by a break in temperature dependence of paramagnetic susceptibility
at T = Te. According to (14), the break magnitude is proportional to the square of
electron polarization.
The value of ME susceptibility (13) increases with the increasing frequency (i.e. ǫ)
and it is a resonance behaviour at ion (ω̄oi) and electron (ω̄oe) frequencies. The largest
value αxy takes at electron frequencies ω ∼ ωe [4]. In this case far from resonance
αxy ∼ µ0P0eǫ
−1
e . For values P0e ∼ 10 µ C cm−2 the magnitude αxy ∼ 10−4 − 10−3.
Orbital magnetic susceptibility induced by spontaneous electric polarization is much
smaller.
4. Ferroelectric-ferromagnetic state
In the ferroelectric-ferromagnetic state when S0 6= 0, L0 6= 0, P0 6= 0, the optical
phonon excitations p⊥ are not degenerated and are of circle precession character
around the direction of a spontaneous magnetic moment Ioz = Loz + 2Soz. The
energies left (ǫ−) and right (ǫ+) precessions are different. As the values of ǫe⊥ ≫
ǫi⊥ ≫ ǫσ from (5) we obtain in a linear approximation over ǫσ
ǫi ≈ ǫoi ± ǫσqiv2(2fi)
−1ǫ−2
oe (qi + qe − 2qiv2C
−1
2 ), (15)
ǫe ≈ ǫoe ± ǫσ.
As seen from (15),splitting of lines of the ion phonon spectrum in the internal mag-
netic field ∼ Io is (ǫe/ǫi) times smaller than the electron one. The latter is also rather
small, ∼ ǫσ/ǫe.
Magnetic moment Io induces a nondiagonal component of dielectric susceptibility
χxy. In the same linear approximation over ǫσ one finds
χi
xy = χi⋆
yx = −iǫσǫQiD
2
{
qe(ǫ
2 − ǫ2i⊥)(ǫ
2 − ǫ2e⊥ + 2qiqev2f
−1
e ) (16)
750
Manifestations of orbital moment in ferroelectrics
+ 3qiqev
2
2QiQ̄e + v2Qi(qi + qe)(ǫ
2 − ǫ2e⊥)
}
,
χe
xy = χe⋆
yx = −iǫσǫD
2
{
(ǫ2 − ǫ2i⊥)[Qi(ǫ
2 − ǫ2e⊥) + 2Q̄e(ǫ
2 − ǫ2i⊥)]
+ qif
−1
i v2Q̄e(3qi + qe)] + qeq
−1
i v22Q̄eQ
2
i
}
.
It follows from (16) that spin and orbital moments induce electric gyrotropy, χxy ∼
(Lo + 2So) which increases with the increasing frequency. The estimations of ex-
pressions (16) far from resonance give χi
xy ∼ χe
xy ∼ ǫσǫs/ǫ
2
e(ǫ ∼ ǫs), χ
i
xy ∼ χe
xy ∼
ǫσǫi/ǫ
2
e(ǫ ∼ ǫi). At frequencies ω ∼ ωe ∼ 1014 − 1015 rad s−1 the electron contri-
bution to dielectric susceptibility is considerably larger than the ion contribution,
and the electric gyrotropy is of the order of magnitude χe
xy ∼ ǫσ/ǫe. The magnitude
ǫσ = 8πµ2
oIo ∼ 10ǫs, i.e. the largest value is χe
xy ∼ 10−3.
High-frequency ME susceptibility of uniaxial ferroelectric-ferromagnet has got
three components which differ from zero, i.e. αxy and αxx = αyy. A nondiagonal
component αxy is approximately determined by expressions (13) at frequencies which
are larger than the spin ones.
A new component αxx = αyy which differs from zero appears only in a ferro-
electric-ferromagnetic state ( or in external electric and magnetic fields[4]), αxx ∼
P0S0. At the frequencies ω ∼ ωe where ME susceptibility is the largest we obtain
approximate expressions
αem
xx = αem
yy ≃ µ0P0e(ǫ0 + 2λ̄S0)(ǫ
2 − ǫ20e)
−1, (17)
αem
xy ≃ −iµ0ǫP0e(ǫ
2 − ǫ20e)
−1.
In [4] where FE was considered in a constant external magnetic field, the expres-
sion obtained for αxx differs from (17).This difference is in the following. There is
an energy of an external magnetic field µ0H0 instead of the energy of orbital excita-
tions (ǫ0 + 2λ̄S0). For maximum fields H0 ∼ 105 Oe reached at present, the energy
µ0H0 ∼ 10 ◦K whereas the value of the energy of orbital excitations ǫ0 ∼ λS0 for
the 3d-compounds is considerably larger, of the order of 100 K.
As shown in [4], the presence of ME susceptibility creates a possibility of a new
optical effect – ME gyration – which consists in the rotation of a plane of polarization
of the reflected and of the transmitted light by an angle which is proportional to
the product of the first degrees of spontaneous electric polarization and magnetic
field, i.e. to the value P0eH0. Therefore, in a ferroelectric-ferromagnet where the
value αxx is considerably larger than in FE, the effect of ME gyration is considerably
strengthened by spin-orbital interaction. In other words, in ferroelectric-ferromagnet,
an orbital moment manifests itself by λ -strengthening of ME gyration.
5. Conclusions and summary
Therefore, a simultaneous consideration of the spin, of the orbital moment, of the
electron polarization and of the ion polarization of the 3d-compounds has provided
a possibility to analyze possible manifestations of electron shell polarization and
751
I.E.Chupis
orbital degrees of freedom of the 3d-electrons in a spectrum and high-frequency
susceptibility.
The orbital moment manifests itself in the breaks in the temperature dependen-
cies of a nonsoft phonon mode and transverse dielectric susceptibility at FE transi-
tion temperature and in λ – increase of ME-gyration. Besides, ME effect of induction
of high-frequency orbital susceptibility by the electron part of electric polarization
has been also predicted. This effect should lead to the break in the temperature
dependence of paramagnetic susceptibility at FE transition temperature.
In a series of publications [6–8] the observation was reported of a “magnetopo-
larization gyration” in ferroelectrics manifested in the rotation of the polarization
plane of the light propagating along the magnetic field and the optical axis of the
crystal through an angle φ proportional to the product of the first powers of electric
polarization and magnetic field. By contrast to Faraday’s effect, the double (forward
and backward) passage of light has led to a compensation of the above-mentioned
“magnetopolarization” effect. On the first sight this effect seems similar to ME gy-
ration [4] but the estimates of ME gyration give a much smaller magnitude of the
effect. In a ferroelectric-ferromagnet, the orbital moment increases the effect of ME
gyration in λ ∼ 102 times in comparison with the value φ ∼ 10−7 rad in a fer-
roelectric [4]. However, this value φ ∼ 10−5 rad is smaller than that declared in
[6–8].
As for as the values of all the predicted effects are proportional to a spontaneous
electric polarization then the 3d-compounds with a proper FE transition are more
useful for the experimental investigations.
This research was supported by INTAS Grant No. 94-935.
References
1. Beznosov A.B., Galuza A.I., Eremenko V.V. Valence fluctuations and atomic polariz-
ability of iron oxides in an atomic polarizability of iron oxides. – In: “Inter. Conf. of
Magnetizm”, Abstract. San-Francisco, 1985, 1Pe 13, p. 67.
2. Chupis I.E., Govorun A.V. On the theory of high-frequency properties of a ferroelec-
tromagnetic with unfrozen orbital moment. // Fiz. Nizk. Temp., 1995, vol. 21, No. 2,
p. 228–234 (in Russian).
3. Rozenfeld E.V., Korolev A.V. Low temperature anisotropy of magnetization in ferro-
magnetic with frozen orbital moment. // Zh. Eksp. Teor. Fiz., 1995, vol. 108, No. 3(9),
p. 862–877 (in Russian).
4. Chupis I.E. Magnetooptical effects in ferroelectric materials. // Fiz. Nizk. Temp., 1997,
vol. 23, No. 3, p. 290–295 (in Russian).
5. Chupis I.E. Elementary excitations in ferroelectromagnetic with orbital magnetic mo-
ment. // Fiz. Tverd. Tela, 1994, vol. 36, No. 7, p. 1910–1917 (in Russian).
6. Vlokh O.G. Magnetogyration. // Ukr. Fiz. Zh., 1981, vol. 26, No. 10, p. 1623–1626 (in
Russian).
7. Vlokh O.G., Zheludev I.S., Sergatyuk V.A. Electro-and magnetogyration in crystals.
// Izv. Akad. Nauk SSSR, Ser. Fiz., 1984, vol. 48, No. 9, p. 1771–1776 (in Russian).
752
Manifestations of orbital moment in ferroelectrics
8. Vlokh O.G., Sergatyuk V.A. Magnetopolarizational pseudogyration. // Doklady Akad.
Nauk SSSR, 1986, vol. 291, No. 4, p.832–835 (in Russian).
Прояви електрон-орбітального моменту у
високочастотних властивостях сегнетоелектриків з
3d-іонами
І.Чупіс
Фізико-технічний інститут низьких температур
ім. Б.І.Вєркіна НАН України,
310164 Харків, просп. Леніна, 47
Отримано 28 червня 1998 р.
Побудована феноменологічна теорія високочастотних властивостей
сегнетоелектрика і сегнетоелектрик-феромагнетика з 3d-іонами,
яка грунтується на розділеному врахуванні спінового і орбітального
електронних моментів, електронних та іонних вкладів до електрич-
ної поляризації. У сегнетоелектричному стані існування електронно-
го орбітального момента приводить до розривів поперечних компо-
нент діелектричної сприйнятливості при температурі сегнетоелек-
тричного переходу. Величини цих розривів пропорціональні до ква-
драта електронної частини спонтанної поляризації і параметра замо-
роження орбітального момента. Аналогічні розриви і зменшення фо-
нонних частот у сегнетоелектричному стані мають спостерігатися в
модах, які не є м’якими. Крім того, передбачено ефект індукції висо-
кочастотного орбітального момента на електронну частину поляри-
зації. Цей ефект може приводити до розриву парамагнітної сприй-
нятливості при температурі сегнетоелектричного переходу. У феро-
електромагнітному стані електронний орбітальний момент проявляє
себе в λ зростанні магнітоелектричної гірації ( λ є постійна спін-
орбітальної взаємодії).
Ключові слова: електрон, орбіталь, момент, сегнетоелектрик,
сприйнятливість
PACS: 78.20.Ls
753
754
|