Critical behaviour of confined systems
The critical phenomena and peculiarities of phase transitions in the confined fluid systems are investigated. A system with the geometry of a planeparallel layer is chosen in order to discuss the influence of the space limitations on the critical characteristics of fluids. The main ideas of the Munster...
Gespeichert in:
| Veröffentlicht in: | Condensed Matter Physics |
|---|---|
| Datum: | 2000 |
| Hauptverfasser: | , , , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут фізики конденсованих систем НАН України
2000
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/121021 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Critical behaviour of confined systems / A.V. Chalyi, K.A. Chalyi, L.M. Chernenko, A.N. Vasilev // Condensed Matter Physics. — 2000. — Т. 3, № 2(22). — С. 335-358. — Бібліогр.: 11 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-121021 |
|---|---|
| record_format |
dspace |
| spelling |
Chalyi, A.V. Chalyi, K.A. Chernenko, L.M. Vasilev, A.N. 2017-06-13T13:09:31Z 2017-06-13T13:09:31Z 2000 Critical behaviour of confined systems / A.V. Chalyi, K.A. Chalyi, L.M. Chernenko, A.N. Vasilev // Condensed Matter Physics. — 2000. — Т. 3, № 2(22). — С. 335-358. — Бібліогр.: 11 назв. — англ. 1607-324X DOI:10.5488/CMP.3.2.335 PACS: 05.70.Fh, 05.70.Jk https://nasplib.isofts.kiev.ua/handle/123456789/121021 The critical phenomena and peculiarities of phase transitions in the confined fluid systems are investigated. A system with the geometry of a planeparallel layer is chosen in order to discuss the influence of the space limitations on the critical characteristics of fluids. The main ideas of the Munster iteration procedure were used to find the pair and the direct correlation functions. Such an important characteristic of the system as the correlation length was found and correspondent results were analyzed in the terms of the scaling theory. Special attention is paid to the calculation of the shifts of the critical parameters (critical temperature and density). The three-moment approximation is used to investigate anisotropic liquids. The system of the Ornstein-Zernike (OZ) integral equations is involved to investigate the correlative properties of the binary fluid mixtures. It is shown for the fluids with the isomorphic character of the interaction that the approximation may be used that makes the system similar to the OZ one- component liquid model. The asymptotic formulae for the pair correlation functions are found and the validity of the Munster method for the binary mixtures is considered. The peculiarities of critical light opalescence for the systems with the special geometry are considered. Досліджено критичні явища та особливості фазових переходів в обмежених рідких системах. Для з’ясування характеру впливу просторової обмеженості на критичні характеристики рідини обрана система з геометрією плоского паралельного прошарку. З метою знаходження парних та прямих кореляційних функцій було використано ідеї ітераційного методу Мюнстера. Отримано вираз для радіуса кореляції флуктуацій параметра порядку і відповідні результати проаналізовані в термінах гіпотези подібності. Окрему увагу приділено розрахунку зсуву критичних параметрів (температури та густини). Для дослідження анізотропних систем використано тримоментне наближення. Аналіз кореляційних властивостей бінарних рідких сумішей проводився з використанням системи інтегральних рівнянь Орнштейна-Церніке (ОЦ). Показано, що для рідин з ізоморфним характером міжмолекулярної взаємодії може бути використане наближення, яке спрощує задачу до моделі однокомпонентної рідини. Знайдено асимптотичні формули для парних кореляційних функцій і показано принципову можливість застосування методу Мюнстера для розгляду бінарних сумішей. Розглянуто особливості критичної опалесценції світла для систем зі спеціальною геометрією. en Інститут фізики конденсованих систем НАН України Condensed Matter Physics Critical behaviour of confined systems Критична поведінка обмежених систем Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Critical behaviour of confined systems |
| spellingShingle |
Critical behaviour of confined systems Chalyi, A.V. Chalyi, K.A. Chernenko, L.M. Vasilev, A.N. |
| title_short |
Critical behaviour of confined systems |
| title_full |
Critical behaviour of confined systems |
| title_fullStr |
Critical behaviour of confined systems |
| title_full_unstemmed |
Critical behaviour of confined systems |
| title_sort |
critical behaviour of confined systems |
| author |
Chalyi, A.V. Chalyi, K.A. Chernenko, L.M. Vasilev, A.N. |
| author_facet |
Chalyi, A.V. Chalyi, K.A. Chernenko, L.M. Vasilev, A.N. |
| publishDate |
2000 |
| language |
English |
| container_title |
Condensed Matter Physics |
| publisher |
Інститут фізики конденсованих систем НАН України |
| format |
Article |
| title_alt |
Критична поведінка обмежених систем |
| description |
The critical phenomena and peculiarities of phase transitions in the confined fluid systems are investigated. A system with the geometry of a planeparallel layer is chosen in order to discuss the influence of the space limitations on the critical characteristics of fluids. The main ideas of the Munster
iteration procedure were used to find the pair and the direct correlation
functions. Such an important characteristic of the system as the correlation length was found and correspondent results were analyzed in the
terms of the scaling theory. Special attention is paid to the calculation of
the shifts of the critical parameters (critical temperature and density). The
three-moment approximation is used to investigate anisotropic liquids. The
system of the Ornstein-Zernike (OZ) integral equations is involved to investigate the correlative properties of the binary fluid mixtures. It is shown
for the fluids with the isomorphic character of the interaction that the approximation may be used that makes the system similar to the OZ one-
component liquid model.
The asymptotic formulae for the pair correlation functions are found and the
validity of the Munster method for the binary mixtures is considered. The
peculiarities of critical light opalescence for the systems with the special
geometry are considered.
Досліджено критичні явища та особливості фазових переходів в обмежених рідких системах. Для з’ясування характеру впливу просторової обмеженості на критичні характеристики рідини обрана система з геометрією плоского паралельного прошарку. З метою знаходження парних та прямих кореляційних функцій було використано ідеї ітераційного методу Мюнстера. Отримано вираз для радіуса кореляції флуктуацій параметра порядку і відповідні результати
проаналізовані в термінах гіпотези подібності. Окрему увагу приділено розрахунку зсуву критичних параметрів (температури та густини). Для дослідження анізотропних систем використано тримоментне наближення. Аналіз кореляційних властивостей бінарних рідких
сумішей проводився з використанням системи інтегральних рівнянь
Орнштейна-Церніке (ОЦ). Показано, що для рідин з ізоморфним характером міжмолекулярної взаємодії може бути використане наближення, яке спрощує задачу до моделі однокомпонентної рідини.
Знайдено асимптотичні формули для парних кореляційних функцій
і показано принципову можливість застосування методу Мюнстера
для розгляду бінарних сумішей. Розглянуто особливості критичної
опалесценції світла для систем зі спеціальною геометрією.
|
| issn |
1607-324X |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/121021 |
| citation_txt |
Critical behaviour of confined systems / A.V. Chalyi, K.A. Chalyi, L.M. Chernenko, A.N. Vasilev // Condensed Matter Physics. — 2000. — Т. 3, № 2(22). — С. 335-358. — Бібліогр.: 11 назв. — англ. |
| work_keys_str_mv |
AT chalyiav criticalbehaviourofconfinedsystems AT chalyika criticalbehaviourofconfinedsystems AT chernenkolm criticalbehaviourofconfinedsystems AT vasilevan criticalbehaviourofconfinedsystems AT chalyiav kritičnapovedínkaobmeženihsistem AT chalyika kritičnapovedínkaobmeženihsistem AT chernenkolm kritičnapovedínkaobmeženihsistem AT vasilevan kritičnapovedínkaobmeženihsistem |
| first_indexed |
2025-11-25T06:43:14Z |
| last_indexed |
2025-11-25T06:43:14Z |
| _version_ |
1850509672667152384 |
| fulltext |
Condensed Matter Physics, 2000, Vol. 3, No. 2(22), pp. 335–358
Critical behaviour of confined systems
A.V.Chalyi 1 , K.A.Chalyi 2 , L.M.Chernenko 3 , A.N.Vasil’ev 4
1 Department of Physics, National Medical University,
13 Shevchenko Blvd., Kiev 01601, Ukraine
2 Dept. Bio. and Chem. Engineering, Gunma University,
Kiryu 376-8515, Japan
3 Institute of Surface Chemistry
of the National Academy of Sciences of Ukraine,
31 Nauki Avenue, Kiev 252028, Ukraine
4 Department of Physics, Kiev University,
6 Glushkova Avenue, Kiev 03022, Ukraine
Received February 23, 2000
The critical phenomena and peculiarities of phase transitions in the con-
fined fluid systems are investigated. A system with the geometry of a plane-
parallel layer is chosen in order to discuss the influence of the space limita-
tions on the critical characteristics of fluids. The main ideas of the Munster
iteration procedure were used to find the pair and the direct correlation
functions. Such an important characteristic of the system as the corre-
lation length was found and correspondent results were analyzed in the
terms of the scaling theory. Special attention is paid to the calculation of
the shifts of the critical parameters (critical temperature and density). The
three-moment approximation is used to investigate anisotropic liquids. The
system of the Ornstein-Zernike (OZ) integral equations is involved to in-
vestigate the correlative properties of the binary fluid mixtures. It is shown
for the fluids with the isomorphic character of the interaction that the ap-
proximation may be used that makes the system similar to the OZ one-
component liquid model.
The asymptotic formulae for the pair correlation functions are found and the
validity of the Munster method for the binary mixtures is considered. The
peculiarities of critical light opalescence for the systems with the special
geometry are considered.
Key words: critical phenomena, phase transitions, confined system,
correlation function
PACS: 05.70.Fh, 05.70.Jk
1. Introduction
A number of achievements of the modern theory of critical phenomena and phase
transitions are connected with the application of powerful methods of statistical
c© A.V.Chalyi, K.A.Chalyi, L.M.Chernenko, A.N.Vasil’ev 335
A.V.Chalyi et al.
physics, namely the method of collective variables by I.R.Yukhnovskii and his col-
laborators [1].
The space limitation is one of the main factors determining the critical behaviour
of the fluid systems undergoing phase transitions. In general case the whole set of the
main results for the critical region may be received using only the pair correlation
function of the order parameter fluctuations of the system. So it is crucial to get the
information about the pair correlation function for the finite-size systems in order
to use it hereafter. As it is well known, the pair correlation function of the density
fluctuations may be expressed in the case of the space infinite one-component liquid
system with a scaling formula [2]:
G2(r) = A exp(−r/Rc)/r
(1+η), (1.1)
where η ≈ 0.034 is the critical exponent and Rc is the correlation length. Due to
the long-ranged correlation at the critical point the correlation length demonstrates
an anomalous growth. For many practical and theoretical purposes the OZ model of
free fluctuation field [3] could be used. In the framework of this model it is possible
to find the asymptotic formulae for the correlation functions and the corresponding
correlation length and calculate the shifts of the critical parameters. Namely, for the
abovementioned system the zeroth approximation for the pair correlation function
is equivalent to the (1.1) when η = 0:
G2(r) = A exp(−r/Rc)/r. (1.2)
Unfortunately, this asymptotic expression has a singularity when its argument is
approaching to zero. Therefore, it would be better to solve this problem using the
Munster method. The main idea of this method is an application of the integral
and differential OZ equations (or systems of OZ equations in the case of binary
mixtures system) and corresponding iteration procedure in order to obtain new
correct expressions for the correlation functions [4]. It is important to stress that
even after the first step of iteration process the singularity [5] of the pair correlation
function disappears.
Let us consider the one-component liquid system. The OZ integral equation has
the following form [3,6,7]:
G2(r1, r2) = f(r1, r2) +
∫
ρ(r′)f(r1, r
′)G2(r
′, r2)dr
′. (1.3)
As a rule the direct correlation function f(r1, r
′) differs significantly from zero only
when the distance |r1−r
′| between the interacting particles is small. So in the case of
an isotropic system when f(r1, r
′) = f(|r1−r
′|) and G2(r1, r
′) = G2(|r1−r
′|) one can
transform the equation (1.3) using the Taylor expansion for the direct correlation
function to the differential OZ equation [4]:
(∇2 − κ2)G2(r) = −f(r)
C2
. (1.4)
336
Critical behaviour of confined systems
Here, the so-called two-moment approximation was used with two spatial moments of
the direct correlation function C0 =
∫
ρ(r)f(r)dr, C2 =
1
6
∫
ρ(r)f(r)r2dr, and κ2 =
(1− C0)/C2, ρ(r) is the local density. When the system is considerably anisotropic
one must take into account the first spatial moment of the direct correlation function.
For this situation the differential OZ equation is
3
∑
i,j=1
aij(r2)
∂2G2(r1, r2)
∂x1i∂x1j
−−→
C 1 ·
−→∇1G2(r1, r2)− (1− C0)G2(r1, r2) =
= −f(r1, r2), (1.5)
where the following definitions were used:
−→
C 1(r2) =
∫
ρ(r)f(r, r2)r dr, aij(r2) =
aji(r2) =
1
2
∫
ρ(x1, x2, x3)f(x1, x2, x3|r2)xixj dx1dx2dx3 and C2 =
1
3
(a11 + a22 + a33).
Lets assume that aii(r) ∼= C2 = const,
−→
C 1(r) ≡
−→
C 1 and ρ(r) = 〈ρ〉 = const. Then
we can get from (1.5)
△G2 +G2xy
a12
C2
+G2xz
a13
C2
+G2yz
a23
C2
−−→a −→∇G2 − κ2G2 = − f
C2
, (1.6)
where vector −→a =
−→
C 1/C2. This equation may be simplified for the systems with a
special symmetry.
2. Plane-parallel layer system
Let us consider the system with the geometry of a plane-parallel layer of the
thickness 2h. Such systems have a significant practical importance because many
real physical and biological systems are spatially finite-sized and their geometrical
form may be taken as a plane-parallel [8].
2.1. The correlation functions
Taking the zeroth boundary conditions to satisfy the limiting transition to the
infinite system one may find the direct and the pair correlation functions in the
following form [8,9]:
G2(ρ, z) =
∞
∑
m=0
G2(m)(ρ) cos
(
π(m+ 0.5)z/h
)
(2.1)
and
f(ρ, z) =
∞
∑
m=0
f(m)(ρ) cos
(
π(m+ 0.5)z/h
)
. (2.2)
Using the zeroth approximation for the direct correlation function f (0)(r) = C0δ(r)/
〈ρ〉 and taking into account that
δ(z) =
1
h
∞
∑
m=0
cos(
π(2m+ 1)z
2h
), (2.3)
337
A.V.Chalyi et al.
one has the following equations for the harmonics of correlation functions from the
integral (1.3) and differential (1.4) OZ equations:
G2(m)(ρ) = f(m)(ρ) + h〈ρ〉
∫
f(m)(ρ1)G2(m)(|−→ρ −−→ρ1 |) d−→ρ1 (2.4)
and
(∇2 − κ2m)G2(m)(ρ) = −C0δ(ρ)
〈ρ〉hC2
, (2.5)
where κ2m = κ2 + π2(2m+1)2/4h2. These equations may be used for the calculation
of the correlation functions by the iteration procedure. So from the (2.5) one can
find the asymptotic formula for the pair correlation function [5,8,9]:
G
(0)
2 (ρ, z) =
C0
2πh〈ρ〉C2
∞
∑
m=0
K0(ρκm) cos
(
π(2m+ 1)/2h
)
. (2.6)
Using then the integral OZ equation (2.4) it is possible to calculate the first approx-
imation for the direct correlation function [5]:
f (1)(ρ, z) =
C0
2πh〈ρ〉C2
∞
∑
m=0
K0(ρ
√
κ2m + C0/C2) cos
(
π(2m+ 1)/2h
)
. (2.7)
Then one may find the first iteration for the pair correlation function [5] from equa-
tion (2.5):
G
(1)
2 (ρ, z) =
1
2πh〈ρ〉C2
∞
∑
m=0
[K0(ρκm)−K0(ρκ̃m)] cos
(
π(2m+ 1)/2h
)
, (2.8)
where κ̃m =
√
κ2m + C0/C2. As it was stressed above the first iteration of the pair
correlation function has no singularities and is more realistic than the asymptotic
expression.
2.2. The correlation length
It is natural to determine the correlation length as the normalized second spatial
moment of the pair correlation function [8,9]:
Rc =
√
∫
G2(r)r2dr
∫
G2(r)dr
, (2.9)
From (2.10) one can find, after integrating and leaving only the first harmonics in
the (2.8), the following expression for the correlation length:
R2
c = R2
xy +R2
z , (2.10)
where
R2
xy =
4
κ2 + π2
4h2
+
4
κ2 + π2
4h2 +
C0
C2
(2.11)
338
Critical behaviour of confined systems
and
R2
z =
(
1− 8
π2
)
h2. (2.12)
As it is seen from the (2.10)–(2.12) at the bulk critical point (κ = 0) the correlation
length has a finite value. Thus the space limitation causes the shifts of the critical
parameters [5,8].
2.3. The shifts of the critical parameters
According to the scaling-law theory, parameter κ may be presented in the fol-
lowing form [2]:
κ = τ νf1(△ρ/τβ) = △ρζf2(τ/△ρ1/β). (2.13)
Here τ = (T−Tc)/Tc and△ρ = (ρ−ρc)/ρc are the deviations of the temperature and
density from their critical values respectively, ν = 0.625, β = 0.325 and ζ = 1.923
are the critical exponents. The asymptotic behaviour of a scaling functions f1(u)
and f2(u) are as follows:
f1(u→ 0) = κ0 = const, f1(u → ∞) ∼ uζ (2.14)
and
f2(u→ 0) = κ0 = const, f2(u→ ∞) ∼ uν . (2.15)
Thus using the expressions (2.10)–(2.12) for the correlation length and dependence
of the parameter κ on the temperature and density one can find the shifts of the
critical parameters with respect to its values at the bulk critical point. The new
critical temperature is
T ∗
c =
Tc
1 + (κ0h∆)−1/ν
(2.16)
and the new critical density is
ρ∗c =
ρc
1 + (κ0h∆)−1/ζ
, (2.17)
where ∆ =
√
1 + 8/π2 + 16/(π2 + 4h2C0/C2). These results are in good agreement
with the experimental data by Lutz [10].
3. Anisotropic systems
In many cases the real systems are essentially anisotropic and it leads to some
considerable effects. Let us consider such systems.
339
A.V.Chalyi et al.
3.1. The spatially nonfinite system
In the case of a spatially infinite system the asymptotic formula for the pair
correlation function of the order parameter fluctuations [11] can be found from the
equation (1.6):
G
(0)
2 (r) =
C0
4π〈ρ〉C2
· exp(ar cos θ/2− r
√
κ2 + a2/4)
r
=
C0
4π〈ρ〉C2
· exp(az/2− r
√
κ2 + a2/4)
r
. (3.1)
Here the direction of the z-axis coincides with the direction of the vector −→a and θ
is the angle between the vectors −→r and −→a . The following iterations may be found
from the integral OZ equation (1.3). The first iteration for the direct correlation
function is
f (1)(r) =
C0
4π〈ρ〉C2
· exp(ar cos θ/2− r
√
κ2 + a2/4 + C0/C2)
r
=
C0
4π〈ρ〉C2
· exp(az/2 − r
√
κ2 + a2/4 + C0/C2)
r
(3.2)
and the first iteration for the pair correlation function is
G
(1)
2 (r) =
1
4π〈ρ〉C2
· exp(ar cos θ/2− r
√
κ2 + a2/4)
r
− 1
4π〈ρ〉C2
· exp(ar cos θ/2− r
√
κ2 + a2/4 + C0/C2)
r
=
1
4π〈ρ〉C2
· exp(az/2 − r
√
κ2 + a2/4)
r
− 1
4π〈ρ〉C2
· exp(az/2 − r
√
κ2 + a2/4 + C0/C2)
r
. (3.3)
The last formula presents the dependence of the correlative properties of the system
on the angle θ and may be used to investigate the correlation length and shifts of
the critical parameters [11].
3.2. The correlation length
Let’s find the correlation length of the spatially infinite anisotropic system. Tak-
ing into account (2.13) and from (3.1) one has the following formula [11]:
Rc(τ) =
1
√
κ2 + a2/4− a cos θ/2
=
R0
√
τ 2ν + a2R2
0/4− aR0 cos θ/2
. (3.4)
340
Critical behaviour of confined systems
Here R0 = κ−1
0 . It is clearly seen that critical temperature in this case depends on
the direction and thus the anisotropy of the system causes the change in the critical
parameters in comparison with the isotropic system.
3.3. The new critical parameters
The new critical temperature T ∗
c may be found from the formula (3.4) for the
correlation length:
T ∗
c =
Tc
1 + (R0a sin
2(θ/2))1/ν
. (3.5)
In the same way one may find the new critical density:
ρ∗c =
ρc
1 + (R0a sin
2(θ/2))β/ν
. (3.6)
The maximal shift of the critical parameters takes place when θ = π and there is no
shift (in comparison with isotropic system) when θ = 0.
3.4. Plane-parallel layer
Let us consider the anisotropic system with a geometry of a plane-parallel layer.
In the situation when −→a = (0, 0, a) one may find, using the (1.3) and (1.6), the
asymptotic expression and the first iterations for the direct and the pair correlation
functions. So the asymptotic formula for the pair correlation function is
G
(0)
2 (r) =
C0 exp(
az
2
)
2πhC2〈ρ〉
∞
∑
m=0
K0(ρ
√
κ2m + a2/4) cos
(
(m+ 0.5)zπ
h
)
. (3.7)
The first approximation for the direct and pair correlation functions are as follows:
f (1)(r) =
C0 exp(
az
2
)
2πhC2〈ρ〉
∞
∑
m=0
K0(ρ
√
κ̃2m + a2/4) cos
(
(m+ 0.5)zπ
h
)
, (3.8)
G
(1)
2 (r) =
exp(az
2
)
2πhC2〈ρ〉
∞
∑
m=0
[
K0(ρ
√
κ2m + a2/4)−K0(ρ
√
κ̃2m + a2/4)
]
× cos
(
(m+ 0.5)zπ
h
)
. (3.9)
In the case when vector −→a has no z-component one may accept without any restric-
tion of the generality that −→a = (0, a, 0) and get, similar to the previous situation,
the asymptotic formula for the pair correlation function
G
(0)
2 (r) =
C0 exp(
ay
2
)
2πhC2〈ρ〉
∞
∑
m=0
K0(ρ
√
κ2m + a2/4) cos
(
(m+ 0.5)zπ
h
)
. (3.10)
The first approximation for the direct correlation function is
f (1)(r) =
C0 exp(
ay
2
)
2πhC2〈ρ〉
∞
∑
m=0
K0(ρ
√
κ̃2m + a2/4) cos
(
(m+ 0.5)zπ
h
)
. (3.11)
341
A.V.Chalyi et al.
And the first approximation for the pair correlation function
G
(1)
2 (r) =
exp(ay
2
)
2πhC2〈ρ〉
∞
∑
m=0
[
K0(ρ
√
κ2m + a2/4)−K0(ρ
√
κ̃2m + a2/4)
]
× cos
(
(m+ 0.5)zπ
h
)
. (3.12)
When the vector −→a has an arbitrary direction the situation is much more com-
plicated. In this case one may take −→a = (0, a sin θ, a cos θ). So the equation (1.6)
transforms as follows:
∆G2 + s
∂2G2
∂y∂z
− a sin θ
∂G2
∂y
− a · cos θ · ∂G2
∂z
− κ2G2 = − f
C2
, (3.13)
where s = a23/
√
a22 · a33 ≈ a23/C2. Making the substitution x → x, y → (y −
(sz)/2)/
√
1− s2/4, z → z and using new variables x, u, z one has the follow equa-
tions from (1.3) and (1.6)
∆G2 − a cos θ
∂G2
∂z
−
[
2a sin θ − as cos θ√
4− s2
]
∂G2
∂u
− κ2G2 = − f
C2
(3.14)
and
G2(x, u, z) = f(x, u, z) + 〈ρ〉
√
1− s2
4
×
∫
f(x′, u′, z′)G2(x− x′, u− u′, z − z′)dx′du′dz′. (3.15)
The solution of this problem is as follows:
1) For the pair correlation function the asymptotic formula may be presented in
such a way
G
(0)
2 (r) =
C0 · exp
[(
az(2 cos θ − s · sin θ) + ay(2 sin θ − s · cos θ)
)
/(4− s2)
]
2πhC2〈ρ〉
√
1− s2/4
×
∞
∑
m=0
K0
(
√
(
x2 +
(2y − sz)2
4− s2
)(
κ2m +
a2(1− s · sin(2θ)/2)
4− s2
)
)
× cos
(
(m+ 0.5)zπ
h
)
. (3.16)
2) The first approximation for the direct correlation function
f (1)(r) =
C0 · exp
[(
az(2 cos θ − s · sin θ) + ay(2 sin θ − s · cos θ)
)
/(4− s2)
]
2πhC2〈ρ〉
√
1− s2/4
×
∞
∑
m=0
K0
(
√
(
x2 +
(2y − sz)2
4− s2
)(
κ̃2m +
a2(1− s · sin(2θ)/2)
4− s2
)
)
× cos
(
(m+ 0.5)zπ
h
)
. (3.17)
342
Critical behaviour of confined systems
3) The first approximation for the pair correlation function
G
(1)
2 (r) =
exp
[(
az(2 cos θ − s · sin θ) + ay(2 sin θ − s · cos θ)
)
/(4− s2)
]
2πhC2〈ρ〉
√
1− s2/4
×
∞
∑
m=0
[
K0
(
√
(
x2 +
(2y − sz)2
4− s2
)(
κ2m +
a2(1− s · sin(2θ)/2)
4− s2
)
)
−K0
(
√
(
x2 +
(2y − sz)2
4− s2
)(
κ̃2m +
a2(1− s · sin(2θ)/2)
4− s2
)
)]
× cos
(
(m+ 0.5)zπ
h
)
. (3.18)
In the case when the anisotropy vector has its direction along the z-axis the corre-
lation length may be found as follows:
(Rc/h)
2 = 1 +
16
4κ2h2 + π2
− 8
a2h2 + π2
− 8ah tanh(ah/2)
a2h2 + π2
+
16a2h2
(a2h2 + π2)2
. (3.19)
In the limiting transition → 0 it gives the zeroth approximation of the correlation
length of the isotropy system [8,9].
4. The binary fluid mixture
The integral OZ system for the binary mixture has the following form:
Gij(r) = fij(r) +
2
∑
k=1
〈ρk〉
∫
Gik(r− r1)fkj(r1)dr1, (4.1)
where fij(r) = fji(r) and Gij(r) = Gji(r) are the direct and the pair correlation
functions of the components i and j respectively, 〈ρk〉 is the average density of the
component k and i, j, k = 1, 2. It is also possible to find the asymptotic expressions
for the correlation functions from the OZ differential system:
2
∑
m=1
[
Bmj
Bij
(△− κ2mj)Gim(r)
]
= −fij(r)
Bij
. (4.2)
Here Aij=〈ρi〉
∫
fij(r)dr, Bij=(〈ρi〉/6)
∫
fij(r)r
2dr and κ2ij=κ
2
ji = (δij −Aij)/Bij.
4.1. The zeroth approximation
In order to receive the asymptotic formulae for the pair correlation functions let
us take the Dirak delta-function as the zeroth approximation for the direct corre-
lation functions. Taking in (4.2) fij(r) = Aijδ(r)/〈ρi〉 one may get the asymptotic
formula for the pair correlation functions:
343
A.V.Chalyi et al.
1) For the spatially infinite system
Gij(r) =
Rij
4π△q2r [(S
2
ij − q21) exp(−q1r)− (S2
ij − q22) exp(−q2r)]. (4.3)
2) For the system with the geometry of a plane-parallel layer
Gij(ρ, z) =
∞
∑
m=0
Gij(m)(ρ) cos
(
π(m+ 0.5)z/h
)
(4.4)
and
Gij(m) =
Rij
2πh△q2
[
(S2
ij − q21)K0
(
ρ
√
q21 +
π2(2m+ 1)2
4h2
)
− (S2
ij − q22)K0
(
ρ
√
q22 +
π2(2m+ 1)2
4h2
)]
. (4.5)
Here the following definitions are used:
q21,2 =
κ211 + κ222 − 2ξ2κ212
2(1− ξ2)
[
1±
√
1− 4
(κ211κ
2
22 − ξ2κ412)(1− ξ2)
(κ211 + κ222 − 2ξ2κ212)
2
]
, (4.6)
R12 =
1
1− ξ2
· A11/B11 − A22/B22
B11 − B22
· B12
〈ρ1〉
=
1
1− ξ2
· A11/B11 − A22/B22
B11 − B22
· B21
〈ρ2〉
, (4.7)
R11 =
1
1− ξ2
· A11/B11 + ξ2κ212
〈ρ1〉
, (4.8)
R22 =
1
1− ξ2
· A22/B22 + ξ2κ212
〈ρ2〉
, (4.9)
S2
12 =
A11 − A22
A11B22 − A22B11
, (4.10)
S2
11 =
(A11/B11)κ
2
22 + ξ2κ412
A11/B11 + ξ2κ212
, (4.11)
S2
22 =
(A22/B22)κ
2
11 + ξ2κ412
A22/B22 + ξ2κ212
(4.12)
and △q2 = q22 − q21 , ξ
2 = B12B21/B11B22.
At the critical point, the main singular part of the correlation length is deter-
mined as follows:
1) For the infinite system
R2
c =
1
q21
+
1
q22
=
κ211 + κ222 − 2ξ2κ212
κ211κ
2
22 − ξ2κ412
. (4.13)
344
Critical behaviour of confined systems
2) For a plane-parallel layer
R2
c =
1
q21 +
π2
4h2
+
1
q22 +
π2
4h2
. (4.14)
The latter formula may be used to obtain the new critical temperature. It is
obvious that in the case of a binary mixture system with the geometry of a plane-
parallel layer the values of the critical parameters depend on the thickness of the
layer as it was before for the one-component system.
4.2. The approximation of asymptotic behaviour
Let us make the following substitution in the system (4.1): G ij=〈ρ〉/
√
〈ρi〉〈ρj〉gij
and fij = 〈ρ〉/
√
〈ρi〉〈ρj〉Cij. The density 〈ρ〉 may be taken in any convenient way.
The system of equations (4.1) transforms to the form as follows:
gij(r) = Cij(r) + 〈ρ〉
2
∑
k=1
∫
gik(r− r1)Ckj(r1)dr1. (4.15)
Taking into account the physical sense of the integrals in the (4.1) it is natural to
accept that
∫
g12(r− r1)C11(r1)dr1 =
∫
g11(r− r1)C12(r1)dr1 (4.16)
and
∫
g12(r− r1)C22(r1)dr1 =
∫
g22(r− r1)C12(r1)dr1. (4.17)
Let us take into account the function
V (r) =
∫
g12(r− r1)C22(r1)dr1
∫
g11(r− r1)C12(r1)dr1
=
〈ρ2〉
∫
G12(r− r1)f22(r1)dr1
〈ρ1〉
∫
G11(r− r1)f12(r1)dr1
. (4.18)
It is natural to suppose that the function V (r) weakly depends on the r e.i. V =
const. In this case one has
g22(r) = V g11(r), C22(r) = V C11(r) (4.19)
and
g12(r) =
√
V g11(r), C12(r) =
√
V C11(r). (4.20)
Therefore, the system of the integral equations separates on the three equations
similar to the OZ equation for one-component liquids:
gij(r) = Cij(r) + 〈ρij〉
∫
Cij(r1) · gij(r− r1)dr1, (4.21)
where 〈ρij〉 = 〈ρ〉(1 + V )/V (i+j−2)/2. So one can find the pair and the direct corre-
lation function for the binary mixture. Thus for the spatially infinite system:
345
A.V.Chalyi et al.
1) The asymptotic formula for the pair correlation function
G
(0)
ij (r) =
C0V
(i+j−2)/2
4πC2(1 + V )
√
〈ρi〉〈ρj〉
· exp(−κr)
r
. (4.22)
2) The first iteration for the direct correlation function
f
(1)
ij (r) =
C0V
(i+j−2)/2
4πC2(1 + V )
√
〈ρi〉〈ρj〉
· exp(−κ̃r)
r
. (4.23)
3) The first iteration for the pair correlation function
G
(1)
ij (r) =
V (i+j−2)/2
4πC2(1 + V )
√
〈ρi〉〈ρj〉
· exp(−κr)− exp(−κ̃r)
r
. (4.24)
Here C0 = 〈ρ1〉
∫
f11(r)dr, C2 = (1/6)〈ρ1〉
∫
f11(r)r
2dr, κ2 = [1 − (1 + V )C0]/(1 +
V )C2 and κ̃2 = κ2 + C0/C2.
In the case of a plane-parallel layer one has:
1) The zeroth iteration for the pair correlation function
G
(0)
ij (r) =
C0V
(i+j−2)/2
2πhC2(1 + V )
√
〈ρi〉〈ρj〉
∞
∑
m=0
K0(ρκm) cos
(
πz(2m+ 1)
2h
)
. (4.25)
2) The first iteration for the direct correlation function
f
(1)
ij (r) =
C0V
(i+j−2)/2
2πhC2(1 + V )
√
〈ρi〉〈ρj〉
∞
∑
m=0
K0(ρκ̃m) cos
(
πz(2m+ 1)
2h
)
. (4.26)
3) The first iteration for the pair correlation function
G
(1)
ij (r) =
V (i+j−2)/2
2πhC2(1 + V )
√
〈ρi〉〈ρj〉
×
∞
∑
m=0
[K0(ρκm)−K0(ρκ̃m)] cos
(
πz(2m+ 1)
2h
)
. (4.27)
The shift of the critical temperature ∆Tc in this case in comparison with the
critical temperature Tc of the one-component liquid is determined as
∆Tc =
Tc
1 + (V R2
0C0/C2)−1/2ν
. (4.28)
The latter formula (4.28) may be used to find the parameter V from the correspond-
ing experimental data.
346
Critical behaviour of confined systems
4.3. The diagonal form of the OZ system
In the matrix form the integral OZ system may be presented as follows:
ĝ(r) = Ĉ(r) + 〈ρ〉
∫
Ĉ(r1)ĝ(r− r1)dr1. (4.29)
Here the following definitions are used: ĝ(r) =
(
g11(r) g12(r)
g21(r) g22(r)
)
and Ĉ(r) =
(
C11(r) C12(r)
C21(r) C22(r)
)
. After the Fourier transforming one has
ĝ(q) = Ĉ(q) + 〈ρ〉Ĉ(q)ĝ(q). (4.30)
Let us consider the arbitrary matrix Ŝ(q) and Ĝ(q) = Ŝ(q)ĝ(q)Ŝ−1(q) F̂ (q) =
Ŝ(q)Ĉ(q)Ŝ−1(q). Then for the new functions Ĝ(q) and F̂ (q) the equation (4.30)
has got just the same form:
Ĝ(q) = F̂ (q) + 〈ρ〉F̂ (q)Ĝ(q). (4.31)
It makes possible to find the Ŝ in such a way that matrix Ĝ will have a diagonal
form. For this reason let us calculate the eigenvalues of Ĝ from the equation:
Det |gij(q)− λ(q)δij | = 0. (4.32)
It gives
λ1,2 =
g11(q) + g22(q)
2
±
√
g212(q) +
(
g11(q)− g22(q)
2
)2
. (4.33)
The matrix Ŝ may be taken as follows:
Ŝ(r) =
1
g12(q)
(
[
√
1 + s(q)2 − s(q)]−1 1
1 [s(q)−
√
1 + s(q)2]−1
)
, (4.34)
where
s(q) =
g11(q)− g22(q)
2g12(q)
=
C11(q)− C22(q)
2C12(q)
. (4.35)
Thus one has
G1,2(q) =
g11(q) + g22(q)
2
± g12(q)
√
1 + s(q)2 (4.36)
and
F1,2(q) =
C11(q) + C22(q)
2
± C12(q)
√
1 + s(q)2. (4.37)
The system of integral equations (4.29) splits into two integral equations similar to
the OZ equation for the one-component liquid system:
G1,2(r) = F1,2(r) + 〈ρ〉
∫
F1,2(r1)G1,2(r− r1)dr1. (4.38)
The Munster scheme may be applied to the equation (4.38) in order to calculate
the consequent iterations of the correlation functions because the initial iteration
for the direct correlation function is commonly used as the delta-function.
347
A.V.Chalyi et al.
4.4. The Munster method for binary mixtures
For the general case of binary systems, the Munster method is available for the
investigation of the pair correlation functions. Let us consider the differential OZ
system in the matrix form:
△ĝ(r)− Ĉ−1
2 (Ê − Ĉ0)ĝ(r) = −Ĉ−1
2 Ĉ(r). (4.39)
Here were used the definitions Ĉ0 = 〈ρ〉
∫
Ĉ(r)dr, Ĉ0 = (1/6)〈ρ〉
∫
Ĉ(r)r2dr and
Ê is the unit matrix. It allows us to find the zeroth approximation for the matrix
of the pair correlation functions using the initial iteration for the direct correlation
functions from (4.39) Ĉ(0)(r) = (Ĉ0/〈ρ〉)δ(r). So, one has got
△ĝ(r)− Ĉ−1
2 (Ê − Ĉ0)ĝ(r) = −Ĉ
−1
2 Ĉ0
〈ρ〉 δ(r). (4.40)
For the spatially infinite system the Fourier transformation of the zeroth approxi-
mation for the matrix of the pair correlation functions ĝ(q) is
ĝ(0)(q) = [q2Ê + Ĉ−1
2 (Ê − Ĉ0)]
−1 Ĉ
−1
2 Ĉ0
〈ρ〉 . (4.41)
The first iteration for the direct correlation functions may be found using the equa-
tion (4.30). It gives
Ĉ(1)(q) = [q2Ê + Ĉ−1
2 (Ê − Ĉ0) + Ĉ−1
2 Ĉ0]
−1 Ĉ
−1
2 Ĉ0
〈ρ〉 . (4.42)
It is important to stress that for conserving the initial symmetry of the integral
system (4.29) the following equation has to take place:
Ĉ2Ĉ0 = Ĉ0Ĉ2. (4.43)
Then from the (4.39) one can get the first iteration for the pair correlation functions
ĝ(1)(q) = [q2Ê + Ĉ−1
2 (Ê − Ĉ0)]
−1 Ĉ
−1
2
〈ρ〉
− [q2Ê + Ĉ−1
2 (Ê − Ĉ0) + Ĉ−1
2 Ĉ0]
−1 Ĉ
−1
2
〈ρ〉 . (4.44)
Then, considering the system with the geometry of a plane-parallel layer, one can
calculate the correlation functions in the following form:
ĝ(ρ, z) =
∞
∑
m=0
ĝ(m)(ρ) cos
(
π(m+ 0.5)z/h
)
(4.45)
and
Ĉ(ρ, z) =
∞
∑
m=0
Ĉ(m)(ρ) cos
(
π(m+ 0.5)z/h
)
. (4.46)
348
Critical behaviour of confined systems
The integral OZ equation (4.30) gives
Ĝm(q) = f̂m(q) + h〈ρ〉f̂m(q)Ĝm(q). (4.47)
And differential equation for the harmonics
△ĝ(m)(ρ)−
[
Ĉ−1
2 (Ê − Ĉ0) +
π2(2m+ 1)2
4h2
Ê
]
ĝ(m)(ρ) = −Ĉ
−1
2 Ĉ0
h〈ρ〉 · δ(ρ). (4.48)
Thus, using the analogy with the previous situation, one can find:
1) The zeroth approximation for the matrix of the pair correlation functions
harmonics
ĝ
(0)
(m)(q) =
[
q
2Ê +
π2(2m+ 1)2
4h2
Ê + Ĉ−1
2 (Ê − Ĉ0)
]
−1
Ĉ−1
2 Ĉ0
h〈ρ〉 . (4.49)
2) The first approximation for the matrix of the direct correlation functions
harmonics
Ĉ
(1)
(m)(q) =
[
q
2Ê +
π2(2m+ 1)2
4h2
Ê + Ĉ−1
2 (Ê − Ĉ0) + Ĉ−1
2 Ĉ0
]
−1
Ĉ−1
2 Ĉ0
h〈ρ〉 . (4.50)
3) The first approximation for the matrix of the pair correlation functions har-
monics
ĝ
(1)
(m)(q) =
[
q
2Ê +
π2(2m+ 1)2
4h2
Ê + Ĉ−1
2 (Ê − Ĉ0)
]
−1
Ĉ−1
2
h〈ρ〉
−
[
q
2Ê +
π2(2m+ 1)2
4h2
Ê + Ĉ−1
2 (Ê − Ĉ0) + Ĉ−1
2 Ĉ0
]
−1
Ĉ−1
2
h〈ρ〉 .(4.51)
Comparing the equations (4.41), (4.42), (4.44) and (4.49), (4.50), (4.51) respec-
tively, it is possible to make the following conclusion: the consequent iterations for
the correlation functions could be expressed by the asymptotic formulae for the
pair correlation functions. Just the same result was received for the one-component
systems [11].
5. Critical parameters and spatial insufficiency
Let us consider a one-component liquid, which is filled in a cylindrical sample of
the radius a that extends infinitely along the z-axes, i.e. 0 < x, y 6 a, −∞ < z <∞.
Reduced geometry of the system leads to the change of critical characteristics while
the cylinder radius became smaller. Thus the declination of the critical temperature
T ∗
c , density ρ
∗
c and viscosity η∗ for finite-size near-critical liquid system takes place.
The geometric factor set the characteristic of spatial limitation and defined as K =
a/Rco, where Rco is the amplitude of the correlation length. The new values of
critical parameters may be defined at the point of the correlation length maximum.
349
A.V.Chalyi et al.
100 1000
299.8
299.85
299.9
299.95
300
300.05
Tc
*(K)
K
Figure 1. Dependence of the new critical temperature T ∗
c (K) on geometrical
factor K. Here, the assumed critical temperature for bulk system Tc = 300 K,
critical exponent ν = 0.5.
To determine such an important characteristic of a liquid as viscosity the scaling
formula for the correlation length of finite-size cylindrical system has to be used.
Correlation length Rc in a spatially limited system of cylindrical geometry appears
dependent not only on thermodynamic variables (temperature, density, etc.), but
also on the geometrical factor K, having the sense of molecular layers number, which
is possible to arrange along the radius of the cylinder. The longitudinal component
of the correlation length (Rc)z along the cylinder axes allows us to determine the
new critical temperature T ∗
c (K). For a sufficiently close vicinity of critical isochore
where ∆ρ≪ τβ , ρ ≈ ρc and T > Tc one can get the following formula for the critical
temperature of liquid in the small volume with a cylindrical geometry:
T ∗
c (K) = Tc[1 + (ψ1/K)1/ν ]−1. (5.1)
From formula (5.1), it naturally follows that under transferring to the spatially
unlimited system when the radius of the cylinder aspires to infinity a→ ∞ accom-
panied by geometrical factor K → ∞, a new critical temperature T ∗
c (K) becomes
equal to the bulk critical temperature Tc, i.e. there is no shift. Figure 1 illustrates
the dependence of a new critical temperature T ∗
c (K) on the geometric factor K for
a cylindrical sample with a homogeneous (zeroth) boundary condition of the first
type with the mean-field value of exponent ν = 0.5 and the assumed bulk criti-
cal temperature Tc = 300 K. The analysis of formula (5.1) shows that the shift
of critical temperature for the cylindrical sample T ∗
c (K) in comparison with the
critical temperature Tc of volumetric phase may be very considerable. For exam-
ple, in the case of geometric factor K = 100 difference of critical temperature is
350
Critical behaviour of confined systems
100 1000 1 104292
294
296
298
300
302
ρc
*(K)
K
Figure 2. Dependence of the new critical density ρ∗c(K) on geometrical factor
K. Here, the assumed critical density for bulk system ρc = 300 kg/m3, critical
exponent δ = 3.
∆Tc = Tc − T ∗
c (K) = 0.173 K. It corresponds to the shift of critical point on
∆τ = 6.4 · 10−5 lower than bulk location.
Using just the same way as for the temperature, one can consider the changing
of a new critical density ρ∗c(K) in a spatially limited system of cylindrical geometry
contrary to the value of critical density ρc for an unlimited volumetric phase. Then
in the vicinity of critical isotherm, where ∆ρ ≫ τ β , for single-component liquid, the
new value of critical density becomes equal to:
ρ∗c(K) = ρc[1 + (ψ1/K)2/(δ−1)]−1. (5.2)
From formula (5.2) follows that under transferring to the spatially unlimited sys-
tem (K → ∞), ρ∗c(K) → ρc the shift of density is absent. Figure 2 illustrates the
dependence of the new critical density ρ∗c(K) on the geometric factor K under a
mean-field value of the critical exponent δ = 3 and ρc = 300 kg/m3. The analysis
of formula (5.2) shows that the shift of the critical density for a cylindrical sample
might be very significant. So, in the case of geometric factor K = 1000 and β = 0.5
(2/(δ − 1) = β/ν) the shift of the critical density is ρc − ρ∗c(K) = 0.72 kg/m3.
It means that the shift of the critical point on ∆ρ = 2 · 10−3 lower than the bulk
location. Using the above results, one could investigate the change of viscosity η.
Combining the scaling relation for viscosity in the absence of shear
η = ηB(Q0Rc)
χ (5.3)
and formula for the correlation length, the equation for viscosity η ∗ of a spatially-
351
A.V.Chalyi et al.
100 1000 1 1041.25
1.3
1.35
1.4
1.45
η∗(K) /(ηΒ A)
K
Figure 3. Dependence of the dimentionless viscosity η∗(K)/(ηBA) on geometrical
factor K. Here, the assumed critical exponent ν = 0.5 and χ = 0.06, temperature
declination τ = 10−5.
limited liquid cylindrical system in near-critical state may be received
η∗ ∼ ηBAKχ(K2τ 2ν + µ2
1)
−χ/2, (5.4)
where ηB is a background viscosity, χ = 0.06 is the critical exponent and A =
(QoRco)
χ is the system-dependent constant. As it is seen from (5.4), the viscosity in
spatially limited system of cylindrical geometry depends not only on thermodynamic
variable but also on the geometric factor K. In comparison with the spatially infinite
system, for which according to the formula
η/ηB ∼ τ−φ, (5.5)
viscosity increases at the critical temperature point (T → Tc, τ → 0) up to infinity
(φ = 0.41 is the critical exponent), for the cylindrical sample of radius a when τ → 0
the maximum value of viscosity is realized:
η∗(τ = 0) ∼ 0.95aχηBQχ
0 . (5.6)
Limiting transition to a case of a spatially unlimited system at K → ∞ has to be
realized. From the formula (5.4) it could be seen, that this transition takes place,
i.e. η ∼ τ−χ for K → ∞. Figure 3 demonstrates the dependence of viscosity η∗ on
the geometric factor K at temperature deviation τ = 10−5. It is possible to make
a conclusion that viscosity became smaller when reducing the size of the system.
Figure 4 illustrates temperature dependence of η∗ at K = 300. Calculations show
352
Critical behaviour of confined systems
η∗(K) /(ηΒ A)
2 10 5 4 10 5 6 10 5 8 10 5 0
1.3
1.4
1.5
1.6
1.7
.6.42 10
5
τ
Figure 4. Temperature dependence of the dimentionless viscosity η∗(K)/(ηBA).
Here assumed critical exponent ν = 0.5 and χ = 0.06, geometrical factorK = 300.
that the anomalous growth of viscosity appears not at the bulk critical temperature
T = Tc (τ = 0) but, as it was to be expected, at the new critical temperature T ∗
c (K),
which is the same as determined from formula (5.1). This fact gives an opportunity
to define a new critical temperature in one of the two ways – from maximum of
correlation length or from maximum of viscosity.
6. Light scattering
The study of light scattering, as it is well known, is a very fruitful method in
molecular physics. Using the existing theoretical approaches and precision experi-
mental data, it is possible to receive a reliable information about various equilibrium
and kinetic properties of liquids in a broad interval of thermodynamic parameters
modification including the critical region.
The description of propagation of the electromagnetic waves (in particular –
light) in near-critical liquids, is based on the well known conclusions, which are
obtained within the framework of the main concepts of the critical light opalescence
theory. To understand the specific features of the light scattering it is important to
take into account the concept of spatially unlocal fluctuations in the proximity of
the critical point that was suggested for the first time in the theory of OZ critical
opalescence. The main point of this idea is the significance of the correlation length of
fluctuations. From the standpoint of modern theories of phase transitions and critical
phenomena, the OZ model actually corresponds to a model of free (noninteracting)
353
A.V.Chalyi et al.
fluctuations and consequently cannot give an adequate account of interactions of
the order parameters, which are strongly fluctuating in immediate proximity to the
critical point. However, the modern experiments prove that for the light scattering in
liquids that are close to the critical point the deviations of the data from predictions
of the OZ theory are minor. In many experimental and theoretical studies of critical
light opalescence, the approximation of single scattering is used. The traditional
description of critical opalescence in an approximation of single scattering is based
on the known bound between the integral light intensity I1 and the Fourier-image
of conjugate correlation G2(q).
Of special significance are the studies of critical light opalescence in individual
liquids and liquid mixtures conducted under the natural conditions of the acting
external gravitational field, which results in a sharp redistribution of physical prop-
erties of a liquid depending on height. Strictly speaking, critical phenomena isomor-
phic to phase transitions of the second type in such liquid systems in the presence of
gravitational field happen in a rather narrow transitional stratum (inter-phase). The
linear size of this transitional stratum appears to be about a correlation length. This
important circumstance allows us to assert that the critical phenomena in liquids
in conditions of the acting gravitational field (the so-called “gravitational effect”)
happen, as a matter of fact, in spatially limited systems.
Let us proceed immediately to the research of dispersing properties of a spatially
limited liquid system near the point of phase transition and consider a spatially
limited system, which has the form of a plane-parallel stratum (−∞ < x, y < ∞,
−h 6 z 6 h). So, the description of light scattering near the critical point in the
approximation of single scattering is based on the following expression:
I1 ∼ Re
∫∫
G2(ρ, z) exp[−i(kxyρ+ kz)]ρ dρ dz, (6.1)
where ρ =
√
x2 + y2. One must take into account the main contribution inG2 for the
plane-parallel stratum, which is set by the formula G2(ρ, z) = K0(ρ
√
κ2 + π2/4h2)×
cos(πz/2h), where κ = R−1
c = R−1
c0 τ
ν is the inverse significance of a correlation length
of spatially unlimited medium, R−1
c0 = κ0 is the amplitude of correlation length, K0
is the McDonald’s function, τ = (T − Tc)/Tc. Then executing an integration of
expression (6.1) one receives
I1(τ, θxy, θz) ∼
(π/h) cos(kzh)
(κ2 + π2/4h2 + k2xy)(π
2/4h2 + k2z)
, (6.2)
where kxy = (4π/λ) sin(θxy/2), kz = (4π/λ) sin(θz/2) is the components of wave
vector modification during scattering. By setting the components of the correlation
length in a plane of the stratum (Rc)xy = 1/
√
κ2 + π2/4h2 and in a perpendicular
direction, i.e. along the axes Oz, (Rc)z = 2h/π, it is possible to transform the formula
(6.2) to the following form:
I1(τ, θxy, θz) ∼
(4h) cos(kzh)
(κ2 + π2/4h2)(1 + (Rc)2xyk
2
xy)(1 + (Rc)2zk
2
z)
. (6.3)
354
Critical behaviour of confined systems
Figure 5. Temperature dependence of the light scattering intensity at the small
angles in the finite-size liquid system with the plane-parallel geometry.
It is easy to see, that for h→ ∞ this result is in agreement with the formula which
define intensity of scattering light in a spatially infinite system, which follows from
main predictions of the OZ theory IOZ(k) = I(k → 0)/(1 +R2
ck
2).
From the formula (6.2) follows, that for zero scattering angles and for the crit-
ical temperature of volumetric (spatially unlimited) phase, i.e. for T = T c, when
κ→ 0, the intensity of scattering has no singularity, and it appears proportional to
a power of cube of the characteristic size of the system (to an element of dispersing
volume) in the direction of space limitlessness (in the considered case – cube of a
thickness of the stratum): I1(0, 0, 0) ∼ (16/π3)h3. From the formula (6.2) follows,
that in the direction of very small scattering angles θxy ≈ 0 associated with the
bounding surface. In the experiment, the anomalous growth of integral intensity of
light scattering (critical opalescence) should be observed when the (R−2
c0 τ
2ν+π2/4h2)
becomes equivalent to zero, i.e. not for the bulk critical temperature T = Tc. This
fact gives an opportunity to define experimentally the new critical temperature for
a spatially limited plane-parallel system from the maximum in temperature depen-
dence of light intensity scattering. Figure 5 demonstrates the dependence of the light
scattering intensity on temperature variable τ for the plane-parallel stratum with
the thickness equal to 100Rc0, 150Rc0, 200Rc0, with a corresponding geometrical
factor K = 2h/Rc0 is equal to 100, 150, 200 and for very small scattering angles
θxy, θz ≈ 10−3.
Using the similar way as above for a plane-parallel stratum we can now study
another spatially limited system, which has got a geometry of cylinder. Taking into
account the main contribution to the pair correlation function of a system with a
cylindrical geometry at zeroth boundary condition, given by the formula
G2(ρ, z) = D1J0(µ1ρ/a) exp
[
−
√
κ20τ
2ν + µ2
1/a
2|z|
]
(6.4)
355
A.V.Chalyi et al.
Figure 6. Temperature dependence of the light scattering intensity at the small
angles in log-log scale for the finite-size liquid system with a cylindrical geometry.
and executing an integration, one can get
I1(τ, kxy, kz) ∼
∼ J1(µ1)
√
a2κ20τ
2ν + µ2
1
1
(1 + (a2/2)[(1− 4/µ2
1)k
2
xy + (a2κ20τ
2ν + µ2
1)k
2
z ])
, (6.5)
where J0 – cylindrical function of zero order, µ1 = 2.4048 is the first naught of
the zero order cylindrical function. From this formula follows in particular, that the
intensity of the light scattering remains final even for τ = 0, i.e. for the critical
temperature of the volumetric phase. Figure 6 demonstrates the dependence of the
light scattering intensity on the temperature variable τ with geometrical factor K =
a/Rc0 is equal to 100, 300, 1000. When reaching the new critical temperature T ∗
c (a) of
the liquid with a cylindrical form, the expression which defines component intensities
in the direction of z-axes has a the following form:
(I1)z ∼
[
Re
∫
exp(−ikzz) exp(−
√
κ20τ
∗2ν + µ2
1/a
2z) dz
]
[κ0τ
∗ν/(κ20τ
∗2ν + k2z)].
(6.6)
From this follows, that at kz → 0 and τ ∗ → 0 the intensity of scattered light
increases unlimitedly. This conclusion, as well as in the case of the plane-parallel
stratum, could be explained for the direction of limitlessness (along z-axes for the
cylinder or in the planes which are parallel to the boundary surface for the stratum)
the correlation of the density fluctuations ceases decreasing exponentially at the new
critical temperature T ∗
c and, as a corollary, only in these directions in the experiment
a divergence of a correlation length and critical opalescence should be observed. In
the above considered examples, the limited systems have the final sizes in fact only
in one (for the stratum) or two (for the cylinder) directions. The availability of lim-
itlessness even in one direction is the strongly requested condition for realization
356
Critical behaviour of confined systems
of a defining indication of the critical condition – the divergence of the correlation
length. However, in the system having the form of a sphere, i.e. a comprehensively
limited system, the mentioned condition cannot be satisfied. The correlation length
under such a geometry remains constant and could reach its maximum value, equal
to the sphere’s radius s. Therefore in such systems the critical state (in its usual
understanding) is absent. Accordingly, the critical state’s most characteristic mani-
festations – critical opalescence of light – should not be observed.
7. Conclusions
As it is shown, the Munster iteration procedure may be applied to the wide class
of the systems: spatially infinite and finite-sized, one-component liquids and binary
mixtures, isotropic systems and the systems having anisotropy. It allows us to cal-
culate the nonsingular expressions for the pair correlation functions of the order
parameter fluctuations, the correlation length and the shifts of the critical parame-
ters. The abovementioned systems have a great practical application and, therefore,
theoretical results received in the paper and especially the results of the critical light
scattering might be used for the discussion of the corresponding experimental data.
References
1. Yukhnovskii I.R. Phase Transitions of the Second Order. The Collective Variables
Method. Kiev, Nauk. Dumka, 1985 (in Russian).
2. Patashinskii A.Z., Pokrovskii V.L. Fluctuation Theory of Phase Transition. Oxford,
Pergamon Press, 1979.
3. Ornstein L.S., Zernike F. // Proc. Roy. Acad. Amsterdam, 1914, No. 17, p. 793–806.
4. Munster A. The theory of fluctuations. – In: Proceedings of the Enrico Fermi Inter-
national School of Physics. New York, 1959.
5. Vasil’ev A.N. Chalyi A.V. // Ukr. Phys. J., 1998, No. 5, vol. 43, p. 572–576 (in
Ukrainian).
6. Croxton C.A. Liquid State Physics. Cambridge University Press, 1974.
7. Stenley H. Introduction To Phase Transitions And Critical Phenomena. Clarendon
Press, Oxford, 1971.
8. Chalyi A.V., Chernenko L.M. Phase transitions in finite-size systems and synaptic
transmission. – In: Dynamical Phenomena at Interfaces, Surfaces and Membranes.
New York, 1993, p. 457–464.
9. Chalyi A.V. // J. Mol. Liquids, 1993, vol. 58, p. 179–195.
10. Lutz H., Gunton J.D. et al. // Sol. State Comm. 1974, No. 14, p. 1075–1078.
11. Vasil’ev A.N., Chalyi A.V. // Ukr. Phys. J., 2000, No. 1, vol. 45, p. 118–123 (in
Ukrainian).
357
A.V.Chalyi et al.
Критична поведінка обмежених систем
О.В.Чалий 1 , К.О.Чалий 2 , Л.М.Черненко 3 ,
О.М.Васильєв 4
1 Кафедра фізики, Національний медичний університет,
01601 Київ, бульв. Шевченка, 13
2 Факультет біо. та хім. інженерії, Університет Ганма,
Кіру 376-8515, Японія
3 Інститут хімії поверхні НАН України,
252028 Київ, просп. Науки, 31
4 Фізичний факультет,
Київський національний університет ім. Т.Шевченка,
03022 Київ, просп. Глушкова, 6
Отримано 23 лютого 2000 р.
Досліджено критичні явища та особливості фазових переходів в об-
межених рідких системах. Для з’ясування характеру впливу просто-
рової обмеженості на критичні характеристики рідини обрана си-
стема з геометрією плоского паралельного прошарку. З метою зна-
ходження парних та прямих кореляційних функцій було використа-
но ідеї ітераційного методу Мюнстера. Отримано вираз для радіу-
са кореляції флуктуацій параметра порядку і відповідні результати
проаналізовані в термінах гіпотези подібності. Окрему увагу приділе-
но розрахунку зсуву критичних параметрів (температури та густи-
ни). Для дослідження анізотропних систем використано тримомент-
не наближення. Аналіз кореляційних властивостей бінарних рідких
сумішей проводився з використанням системи інтегральних рівнянь
Орнштейна-Церніке (ОЦ). Показано, що для рідин з ізоморфним ха-
рактером міжмолекулярної взаємодії може бути використане на-
ближення, яке спрощує задачу до моделі однокомпонентної рідини.
Знайдено асимптотичні формули для парних кореляційних функцій
і показано принципову можливість застосування методу Мюнстера
для розгляду бінарних сумішей. Розглянуто особливості критичної
опалесценції світла для систем зі спеціальною геометрією.
Ключові слова: критичні явища, фазові переходи, обмежена
система, кореляційна функція
PACS: 05.70.Fh, 05.70.Jk
358
|