Behaviour of the order parameter of the simple magnet in an external field

The effect of a homogeneous external field on the three-dimensional uniaxial magnet behaviour near the critical point is investigated within the framework of the nonperturbative collective variables method using the ρ⁴ model. The research is carried out for the low-temperature region. The anal...

Full description

Saved in:
Bibliographic Details
Date:2005
Main Authors: Kozlovskii, M.P., Pylyuk, I.V., Prytula, O.O.
Format: Article
Language:English
Published: Інститут фізики конденсованих систем НАН України 2005
Series:Condensed Matter Physics
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/121049
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Behaviour of the order parameter of the simple magnet in an external field / M.P. Kozlovskii, I.V. Pylyuk, O.O. Prytula // Condensed Matter Physics. — 2005. — Т. 8, № 4(44). — С. 749–760. — Бібліогр.: 20 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-121049
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1210492025-06-03T16:27:05Z Behaviour of the order parameter of the simple magnet in an external field Поведінка параметра порядку простого магнетика в зовнішньому полі Kozlovskii, M.P. Pylyuk, I.V. Prytula, O.O. The effect of a homogeneous external field on the three-dimensional uniaxial magnet behaviour near the critical point is investigated within the framework of the nonperturbative collective variables method using the ρ⁴ model. The research is carried out for the low-temperature region. The analytic explicit expressions for the free energy, average spin moment and susceptibility are obtained for weak and strong fields in comparison with the field value belonging to the pseudocritical line. The calculations are performed on the microscopic level without any adjusting parameters. It is established that the long-wave fluctuations of the order parameter play a crucial role in forming a crossover between the temperature-dependence and fielddependence critical behaviour of the system. В рамках непертурбативного методу колективних змінних на основі моделі ρ⁴ досліджено вплив зовнішнього поля на критичну поведінку тривимірного одновісного магнетика. Дослідження проведені для низькотемпературної області. Отримані аналітичні вирази для вільної енергії, середнього спінового моменту і сприйнятливості у випадку слабких і сильних полів по відношенню до величини поля, що задовільняє рівняння псевдокритичної лінії. Розрахунки проведені на мікроскопічному рівні без застосування допоміжних параметрів. Встановлено, що вирішальну роль у формуванні переходу між температурозалежною і залежною від поля критичною поведінкою системи відіграють довгохвильові флуктуації параметра порядку. 2005 Article Behaviour of the order parameter of the simple magnet in an external field / M.P. Kozlovskii, I.V. Pylyuk, O.O. Prytula // Condensed Matter Physics. — 2005. — Т. 8, № 4(44). — С. 749–760. — Бібліогр.: 20 назв. — англ. 1607-324X PACS: 05.50.+q, 05.70.Ce, 64.60.Fr, 75.10.Hk DOI:10.5488/CMP.8.4.749 https://nasplib.isofts.kiev.ua/handle/123456789/121049 en Condensed Matter Physics application/pdf Інститут фізики конденсованих систем НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description The effect of a homogeneous external field on the three-dimensional uniaxial magnet behaviour near the critical point is investigated within the framework of the nonperturbative collective variables method using the ρ⁴ model. The research is carried out for the low-temperature region. The analytic explicit expressions for the free energy, average spin moment and susceptibility are obtained for weak and strong fields in comparison with the field value belonging to the pseudocritical line. The calculations are performed on the microscopic level without any adjusting parameters. It is established that the long-wave fluctuations of the order parameter play a crucial role in forming a crossover between the temperature-dependence and fielddependence critical behaviour of the system.
format Article
author Kozlovskii, M.P.
Pylyuk, I.V.
Prytula, O.O.
spellingShingle Kozlovskii, M.P.
Pylyuk, I.V.
Prytula, O.O.
Behaviour of the order parameter of the simple magnet in an external field
Condensed Matter Physics
author_facet Kozlovskii, M.P.
Pylyuk, I.V.
Prytula, O.O.
author_sort Kozlovskii, M.P.
title Behaviour of the order parameter of the simple magnet in an external field
title_short Behaviour of the order parameter of the simple magnet in an external field
title_full Behaviour of the order parameter of the simple magnet in an external field
title_fullStr Behaviour of the order parameter of the simple magnet in an external field
title_full_unstemmed Behaviour of the order parameter of the simple magnet in an external field
title_sort behaviour of the order parameter of the simple magnet in an external field
publisher Інститут фізики конденсованих систем НАН України
publishDate 2005
url https://nasplib.isofts.kiev.ua/handle/123456789/121049
citation_txt Behaviour of the order parameter of the simple magnet in an external field / M.P. Kozlovskii, I.V. Pylyuk, O.O. Prytula // Condensed Matter Physics. — 2005. — Т. 8, № 4(44). — С. 749–760. — Бібліогр.: 20 назв. — англ.
series Condensed Matter Physics
work_keys_str_mv AT kozlovskiimp behaviouroftheorderparameterofthesimplemagnetinanexternalfield
AT pylyukiv behaviouroftheorderparameterofthesimplemagnetinanexternalfield
AT prytulaoo behaviouroftheorderparameterofthesimplemagnetinanexternalfield
AT kozlovskiimp povedínkaparametraporâdkuprostogomagnetikavzovníšnʹomupolí
AT pylyukiv povedínkaparametraporâdkuprostogomagnetikavzovníšnʹomupolí
AT prytulaoo povedínkaparametraporâdkuprostogomagnetikavzovníšnʹomupolí
first_indexed 2025-12-02T08:40:51Z
last_indexed 2025-12-02T08:40:51Z
_version_ 1850385211585462272
fulltext Condensed Matter Physics, 2005, Vol. 8, No. 4(44), pp. 749–760 Behaviour of the order parameter of the simple magnet in an external field M.P.Kozlovskii, I.V.Pylyuk, O.O.Prytula Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 1 Svientsitskii Str., 79011 Lviv, Ukraine Received July 18, 2005, in final form October 31, 2005 The effect of a homogeneous external field on the three-dimensional uniax- ial magnet behaviour near the critical point is investigated within the frame- work of the nonperturbative collective variables method using the ρ 4 mod- el. The research is carried out for the low-temperature region. The analytic explicit expressions for the free energy, average spin moment and suscep- tibility are obtained for weak and strong fields in comparison with the field value belonging to the pseudocritical line. The calculations are performed on the microscopic level without any adjusting parameters. It is established that the long-wave fluctuations of the order parameter play a crucial role in forming a crossover between the temperature-dependence and field- dependence critical behaviour of the system. Key words: critical point, order parameter, Ising model PACS: 05.50.+q, 05.70.Ce, 64.60.Fr, 75.10.Hk 1. Introduction We propose an approach for describing the critical behaviour of a three-dimen- sional (3D) uniaxial magnet. Despite the variety of investigations, the problem has not been solved exactly so far [1]. Another reason of studying this model is its possible application to the study of nonmagnetic systems, such as binary alloys, simple fluids, micellar systems and so on. The second order phase transitions in the systems belonging to the 3D Ising universality class are also expected in high- energy physics [2]. Most investigations are devoted to the calculations of universal characteristics of the system, particularly, critical exponents and amplitude ratios of thermodynamic functions. The description of the system taking into account the effect of the external field appears to be a more complicated problem. It is well known that the presence of the field causes the smearing of second order phase transition. In the vicinity of the critical point, the singularities of some thermodynamic functions transform into the c© M.P.Kozlovskii, I.V.Pylyuk, O.O.Prytula 749 M.P.Kozlovskii, I.V.Pylyuk, O.O.Prytula maxima at fixed values of the field and temperature. These values correspond to the case when the effects of the field and temperature on the critical behaviour of the system are equivalent. Therefore, the simple series expansions in the scaling variable are not valid in this region, since this variable is of the order of unity [3]. In this region, the relations of thermal properties of the spin models to the properties of the clusters of spins in geometrical terms [4] are of great interest. Early investigations regarding the 3D Ising model in the external field are re- ported in [5]. It is performed along the critical “isoterm” (T = Tc) using the series expansion technique. In [6], the description of the system is carried out employi- ng the transfer matrix method. The asymptotic form of the low-temperature free energy for this model was obtained. However, this description is valid only for low temperatures. The results presented in [7] were obtained using the quantum field theory and renormalization group (RG) technique. All calculations are based on the perturbative expansion at fixed d = 3 dimension. The equation of state is deter- mined numerically using the parametric representation. The main difficulty in using this approach is to extrapolate the field theory results from T > Tc to T < Tc region (Tc is the critical temperature). To solve this problem, it is necessary to proceed with analytical continuation in the complex τ -plane (τ is the reduced temperature (τ = (T −Tc)/Tc)). Consequently, the calculations of thermodynamic functions and their ratios of amplitude are complex. In order to determine the equation of state in parametric representation, one should employ some adjusting parameters. This is another disadvantage of this approach. The equation of state in parametric represen- tation can be also obtained using the high-temperature expansion results [8]. There are other investigations devoted to this problem, that are performed by numerical methods [9–12]. In this article, the description of the 3D Ising-like magnet near the critical point in the external field by the nonperturbative collective variables (CV) method [13,14] is presented for the case of T < Tc. Using the transition from the spin variables to the collective variables, which play the role of the modes of spin density oscillations, one can calculate both universal and nonuniversal characteristics of the system. Par- ticularly, we determine the explicit expressions for free energy, average spin moment and susceptibility as functions of the external field, which is introduced in the Hamil- tonian from the outset. These calculations are based on the non-Gaussian quartic measure density (ρ4 model). Since, the investigations are preformed on the micro- scopic level and the interaction potential contains some microscopic parameters, one can investigate the thermodynamic characteristics of the system as functions of these parameters. 2. Basic relations We consider the simplest one-component spin model on the simple cubic lattice with period c in a homogeneous external field h. For calculations, we use the following 750 Behaviour of the order parameter approximation of Fourier transform Φ(k) = { Φ(0)(1 − 2b2k2), k ∈ B0, Φ0 = Φ(0)Φ̄, k ∈ B\B0 , (1) where Φ(0) = 8πA (b/c)3, and regions B and B0 are defined as B = { k = (kx, ky, kz)|ki = −π c + 2π c ni Ni ; ni = 1, 2, . . . , Ni, i = x, y, z } , (2) B0 = { k = (kx, ky, kz)|ki = − π c0 + 2π c0 ni N0i ; ni = 1, 2, . . . , N0i, i = x, y, z } . (3) The quantities A and b are the microscopic parameters of the interaction potential [13], Φ̄ is the small constant, N3 0i = N0, c0 = cs0, N0 = s−d 0 N , d = 3 is the dimension of the space and N is total number of sites. The parameter s0 (s0 > 1) determines the region of values k ∈ B0, where the parabolic approximation for Φ(k) is valid. It should be noted that the interaction potential is an exponentially decreasing function of the distance rjl between particles at sites j and l, Φ(rjl) = A exp(−rjl/b). In the general form, the Fourier transform of this potential is determined as Φ(k) = Φ(0)/(1 + b2k2)2. For small values of the wave vector, the parabolic approximation is effective. The starting point of these calculations is the partition function of the N0- multiple integral with respect to CV [15]: Z = Z0 √ 2 N0−1 eã0N0 ∫ (dρ)N0 exp [ −a1 √ N0ρ0 − 1 2 ∑ k∈B0 d(k)ρkρ−k −a3 3! N −1/2 0 ∑ k1,...,k3 ki∈B0 ρk1 . . . ρk3 δk1+···+k3 −a4 4! N−1 0 ∑ k1,...,k4 ki∈B0 ρk1 . . . ρk4 δk1+···+k4 ] , (4) where d(k) = ã2 − βΦ(0) + 2b2βΦ(0)k2, β = 1/kT. (5) The appearance of the terms with odd powers of CV is caused by the presence of the field. Coefficients Z0, ã0, ã2 and al are functions of the external field [15]. The detailed procedure of calculating (4) by the step-by-step integration method is presented in [13,14]. It can be represented as RG transformation of the Wilson type with renormalization parameter s (s > 1). After performing np + 1 iterations, as a result, we obtain the partition function in the following form: Z = Z0Q0Q1 . . . Qnp jnp+1 [ Q(P (np)) ]Nnp+1 Inp+1 . (6) The partial partition functions are written as Qn = [Q(P (n−1))Q(dn)]Nn . 751 M.P.Kozlovskii, I.V.Pylyuk, O.O.Prytula Here jnp+1 = √ 2 Nnp+1−1 , and general expressions for Q(P (n−1)) and Q(dn) are given in [16]. The quantity Inp+1 from (6) is presented as [15] Inp+1 = ∫ (dρ)Nnp+1 exp [ −ã (np+1) 1 N 1/2 np+1ρ0 − 1 2 ∑ k∈Bp dnp+1(k)ρkρ−k − 1 3! a (np+1) 3 N −1/2 np+1 ∑ k1,...k3 ki∈Bp ρk1 . . . ρk3 δk1+···+k3 − 1 4! a (np+1) 4 N−1 np+1 ∑ k1,...,k4 ki∈Bp ρk1 . . . ρk4 δk1+···+k4 ] . (7) The region Bp ≡ Bnp+1 has the form similar to (3) for the lattice with period cnp+1 = c0s np+1, where s is the RG parameter (s > 1). The coefficients in (7) are expressed through initial coefficients using the recurrence relations (RR). Passing on from quantities a (n) l to wn, rn, vn and un by relations ã (n) 1 = s−nwn, dn(0) = s−2nrn , a (n) 3 = s−3nvn, a (n) 4 = s−4nun , (8) new quantities wn, rn, vn and un are defined by solutions of RR linearized near the fixed point (w∗ = 0, r∗ = −f0βΦ(0), v∗ = 0, u∗ = ϕ0(βΦ(0))2). In the case of T < Tc, they have the form wn = −ch1h ′En 1 − ch2h ′T (0) 13 ( ϕ 1/2 0 βΦ(0) )−1 En 3 , rn = r∗ − c (0) k1 βΦ(0)τ1E n 2 + ck2T (0) 24 (ϕ 1/2 0 βΦ(0))−1En 4 , vn = −ch2h ′En 3 , un = u∗ − c (0) k1 (βΦ(0))2T (0) 42 ϕ 1/2 0 τ1E n 2 + ck2E n 4 . (9) Here h′ = βh is the reduced external field, τ1 = −τ , El are eigenvalues of the RG transformation matrix (E1 = 20.977, E2 = 7.374, E3 = 1.838 and E4 = 0.397) [15]. Other quantities are some coefficients, which do not depend on the field and temperature [16]. The condition of small deviations of quantities wn, rn, vn and un from the fixed point defines some value n = np, at which the system leaves the critical regime region (the exit point). Taking into account the eigenvalues El, one can see, that deviations are mainly formed in the first two equations of (9) by temperature τ and field h variables. In order to obtain explicit dependences for thermodynamic functions, we use the approximation, that the exit point np is only a function of one of the variables h′ and τ . One chooses the variable, which has a stronger effect on the critical behaviour than the other one. Hence, there are two cases: the weak field region is determined by the equality np = µτ = − ln τ̃1 ln E2 − 1, (10) 752 Behaviour of the order parameter where the quantity µτ defines the exit point by the temperature value, and for the strong field region we have np = nh = − ln h̃ ln E1 − 1, (11) where nh is the exit point controlled by the field. Here h̃ = h′/f0 and τ̃1 = c (0) k1 τ1/f0. The equality µτ = nh corresponds to the case when the effects of the temperature and the field on the critical behaviour of the system are equivalent. In the field- temperature plane in double logarithmic scale of the plot, this case is represented by the so-called pseudocritical line h̃c = τ̃βδ 1 , (12) where the quantities β and δ are the critical exponents. 3. Free energy of the system and equation of state According to the formula (6), it is convenient to write down the free energy in the form: [15] Fe = F0 + FCR + FTR + FI . (13) The term F0 corresponds to the contribution from the noninteracting spins (in the case of Φ̄ = 0). It has the following form F0 = −kTN ( ln 2 + ln cosh h′ + 1 2 βΦ(0)Φ̄ ) . (14) The term FCR is the result of RG transformations and represents the contribution from the short-wave oscillation modes. The expression for FCR is written as FCR = −kTN0 [ e0p − e1pτ̃1 + e2pτ̃ 2 1 + e3ph̃ 2 +(−F10 + F11τ̃1E np+1 2 − F12τ̃ 2 1 E 2(np+1) 2 )s−3(np+1) ] . (15) For the quantity FTR, we have FTR = −kTN0s −3(np+1) { fp1c − np ln s − fp11cτ̃1E np+1 2 − fp12cτ̃ 2 1 E 2(np+1) 2 } . (16) This is the free energy of the regime, which corresponds to the transition from short- wave to long-wave oscillation modes of the order parameter. In expressions (15) and (16), the quantities F1l, elp, fp1c and fp1lc are independent of the field [16]. The term from (13), which represents the contribution from the long-wave fluc- tuations, has the form FI = −kT ln Inp+1. (17) 753 M.P.Kozlovskii, I.V.Pylyuk, O.O.Prytula The quantity Inp+1 is calculated using the series of substitutions of variables. The first of them is ρk = ηk + σh √ Nδk. Thus, we obtain Inp+1 = exp [E0(σh)] ∫ (dη)Nnp+1 exp [ A0 √ Nη0 − 1 2 ∑ k∈Bnp+1 dh(k)ηkη−k − 1 3! bhN −1/2 np+1 ∑ k1,...,k3 ki∈Bnp+1 ηk1 . . . ηk3 δk1+···+k3 − 1 4! ahN −1 np+1 ∑ k1,...,k4 ki∈Bnp+1 ηk1 . . . ηk4 δk1+···+k4 ] . (18) Here A0 = a1mh̃ − dnp+1(0)σh − 1 6 a (np+1) 4 σ3 h N Nnp+1 , dh(k) = dh(0) + 2βΦ(0)b2k2, dh(0) = dnp+1(0) + 1 2 a (np+1) 4 σ2 h N Nnp+1 , bh = σha (np+1) 4 ( N Nnp+1 ) 1 2 , ah = a (np+1) 4 (19) and E0(σh) = N  a1mσhh̃ − 1 2 dnp+1(0)σ2 h − a (np+1) 4 24 σ4 h N Nnp+1   . (20) The quantity σh can be found employing the condition ∂E0(σh)/∂σh = 0. Performing the substitution of the variable σh = σ0s − np+1 2 , (21) we arrive at the cubic equation [ a1mh̃E np+1 1 − rnp+1σ0 − 1 6 unp+1σ 3 0s 3 0 ] s− 5 2 (np+1) = 0. (22) The solution of (22) is chosen using the condition of free energy minimization. It also nullifies the quantity A0 from (19). The quadratic term in the expression of the exponent in (18) becomes positive and dominating in comparison with other terms for all k 6= 0. Thus, we can perform the integration in (18) with respect to the variables ηk except the variable η0. The next step in the calculations lies in returning to the variable ρ0 by means of η0 = ρ0 − σh √ N. 754 Behaviour of the order parameter The average value of the variable ρ0 plays the role of the order parameter of the system. Therefore, performing the integration with respect to this variable , we get the main contribution to the total free energy and average spin moment. The integration is carried out performing the substitution ρ0 = ρh √ N and using the steepest descent method. As a result, the quantity Inp+1 assumes the following form: Inp+1 = ∏ k∈Bnp+1 k 6=0 ( π dh(k) ) 1 2 √ N ∫ dρh exp [NE0] , (23) where E0 = a1mE np+1 1 s− 5 2 (np+1)h̃ρh − 1 2 rnp+1s −2(np+1)ρ2 h − 1 4! sd 0unp+1s −(np+1)ρ4 h . (24) Using the condition ∂E0/∂ρh = 0, we find the root of the cubic equation satisfying the condition of the free energy minimization in the form ρh = σ0hs − np+1 2 . (25) Thus, the quantity Inp+1 can be written as Inp+1 = ∏ k∈Bnp+1 k 6=0 ( π dh(k) ) 1 2 exp [NE0(σ0h)] , (26) where E0(σ0h) = s−3(np+1) [ a1mE np+1 1 h̃σ0h − 1 2 rnp+1σ 2 0h − 1 4! sd 0unp+1σ 4 0h ] . (27) As one can see, this quantity is the function of the variable ρ0, whose average value is the order parameter as it was mentioned above. Thus, the expression (27) is the microscopic analog of the Landau free energy as well as the relation (25) is the equation of state. Taking the logarithm, transiting to the spherical Brillouin zone and integrating with respect to k in the expression (26), we arrive at the formula for free energy of long-wave fluctuations: FI = −kTN {[ (np + 1) ln s − 1 2 I ′ 0 + 1 2 ln π ] s−3 0 + E0(σ0h) } s−3(np+1). (28) The quantity I ′ 0 has the form I ′ 0 = ln(D′ 0 + D′ 1) − 2 3 + 2 D′ 0 D′ 1 − 2 ( D′ 0 D′ 1 ) 3 2 arctan ( D′ 1 D′ 0 ) 1 2 , and coefficients D′ 0 and D′ 1 are defined as D′ 0 = rnp+1 + 1 2 s3 0unp+1σ 2 0h, D′ 1 = 2βΦ(0)s−2 0 ( πb c )2 . 755 M.P.Kozlovskii, I.V.Pylyuk, O.O.Prytula Collecting the contributions from all regimes of fluctuations according to (13), we can now write down complete expressions for the free energy of the system in case of strong and weak fields. Taking into account that in the case of np = µτ (see (10)) s−3(µτ+1) = τ̃ 3ν 1 and τ̃1E µτ+1 2 = 1, the total free energy for the weak field region takes on the form Fe = −kTN [ ln cosh h′ + l0 + l1µeτ̃ 3ν 1 + l11µeh̃τ̃ ν 2 1 + l2h̃ 2 − l3τ̃1 + l4τ̃ 2 1 ] , (29) where l0 = ln 2 + 1 2 βcΦ(0)Φ̄ + s−3 0 e0p , l1µe = l (0) 1µe − 1 2 rµτ+1σ 2 0h − 1 24 uµτ+1s 3 0σ 4 0h , l11µe = a1mσ0h , l2 = s−3 0 e3p , l3 = s−3 0 e1p − 1 2 βcΦ(0)Φ̄f0/c (0) k1 , l4 = s−3 0 e2p + 1 2 βcΦ(0)Φ̄f 2 0 /(c (0) k1 )2. (30) Here βc is the inverse critical temperature. The quantity l (0) 1µe is obtained by the summation of coefficients proportional to τ̃ 3ν 1 from different contributions. ρ Figure 1. The contribution to the order parameter from the regime of long-wave fluctuations as a function of the field for τ = 10−5. According to the relation (11), we have s−3(nh+1) = h̃ 6 5 and Enh+1 2 = h̃− 1 βδ . Thus, the free energy of the strong field region is written as Fe,h = −kTN [ ln cosh h′ + l0 + l (−) 1e h̃ 6 5 − l11eτ̃1h̃ 6 5 − 1 p0 +l12eτ̃ 2 1 h̃ 6 5 − 2 p0 + l2h̃ 2 − l3τ̃1 + l4τ̃ 2 1 ] . (31) Here p0 = βδ, and the coefficients satisfy the following relations: l (−) 1e = E0,h + (ln s − 1 2 I ′ 0 + 1 2 ln π + fp1c − F10)s −3 0 , l11e = −s−3 0 (F11 − fp11c), l12e = −s−3 0 (F12 + fp12c). (32) 756 Behaviour of the order parameter The main contribution to the order parameter (25) for weak fields h′ < h′ c takes on the form ρh = σ0hτ̃ ν 2 1 (33) and for strong fields h′ > h′ c ρh = σ0hh̃ 1 5 , (34) respectively. The quantity σ0h is the root of the cubic equation a1mh̃E np+1 1 − rnp+1σ0h − 1 6 unp+1σ 3 0hs 3 0 = 0 (35) derived from (27). The dependences (33) and (34) are shown in figure 1. As one can see, they coincide in the point h′ = h′ c (h′ c = f0h̃c). Tending to the pseudocritical line region, the coefficient σ0h becomes essentially dependent on the field. In the point h′ = h′ c, this dependence is the most substantial. Such a dependence is related to the presence of the field in terms of the cubic equation (35). The quantity σ0h en- sures a crossover between the temperature-dependence and field-dependence critical behaviour. With the field further increasing, the dependence on the field is reduced, and σ0h in the case of h′ � h′ c becomes practically independent of the field. The expressions (29) and (31) allow us to get other thermodynamic characte- ristics of the system. Particularly, the total average spin moment can be obtained using the well-known relation σ = −(N−1 · dF/dh)T . In the case of the small fields, the explicit expression for order parameter has the form σ(−) e = tanh h′ + 2l2f −2 0 h′ + l11µef −1 0 τ̃ ν 2 1 . (36) The dependence of the coefficient l11µe on the field and temperature is responsible for the crossover between two types of the critical behaviour and for the divergence of the second order derivatives of the free energy in the critical point. When h̃ > h̃c, the total order parameter can be written as follows σ (−) e,h = tanh h′ + 2l2f −2 0 h′ + σ0ehh ′ 6 5 + 6 5 l (−) 1e f − 6 5 0 h′ 1 5 −σ1ehτ̃1h ′ 1 5 − 1 p0 + σ2ehτ̃ 2 1 h ′ 1 5 − 2 p0 . (37) The coefficients in expressions (36), (37) and in the following expressions for the susceptibility can be obtained through the coefficients (30) and (32) by differentia- ting the free energy of the system with respect to the field variable for the case of h̃ < h̃c and h̃ > h̃c, respectively. In the case of h̃ < h̃c, the susceptibility is defined as χ(−) e = 1 kT [1 − tanh2 h′ + 2l2f −2 0 + f−1 0 ∂l11µe ∂h τ̃ ν 2 1 ]. (38) When h̃ > h̃c, we obtain χ (−) e,h = 1 kT [ 1 − tanh2 h′ + 2l2f −2 0 + χ0ehh ′ 6 5 + 12 5 σ0ehh ′ 1 5 +χ (−) 1ehh ′− 4 5 − χ2ehτ̃1h ′− 4 5 − 1 p0 + χ3ehτ̃ 2 1 h ′− 4 5 − 2 p0 ] . (39) 757 M.P.Kozlovskii, I.V.Pylyuk, O.O.Prytula Due to the approximation that exit point np is one-variable function, there is some disagreement between the quantities σ(−) e , σ (−) e,h as well as between χ(−) e and χ (−) e,h in the vicinity of the pseudocritical line (for example, χ(−) e = 2.01 · 105 and χ (−) e,h = 2.02 · 105 at τ = 10−5, h′ = h′ c). Nevertheless, the region of disagreement is quite narrow, since the long-wave fluctuations play the major role in the critical phenomena. 4. Conclusions The description of the effect of the external magnetic field on the 3D Ising-like magnet near the critical point using the CV method in the low-temperature region is presented. We get the explicit analytic expressions for the free energy, order pa- rameter and susceptibility as functions of the field and temperature. For variable ρ0, which plays the role of the order parameter in the CV method, the field dependence of the whole range of fields and temperatures in the vicinity of the critical point is obtained. In the proposed approach, the crossover between critical behaviour con- trolled by field or temperature variable is ensured mainly by the contribution from the long-wave fluctuations. Therefore, this dependence is the main contribution to the total equation of state. Since the calculations are carried out on the microscop- ic level, we can obtain the dependences of the nonuniversal characteristics on the microscopic parameters of the system (a lattice constant and parameters of the in- teraction potential). Calculations are performed within the framework of the quartic measure density, which allows one to obtain the qualitative description of the sys- tem behaviour. For more accurate estimations, it is necessary to use the ρ6 model [17–19]. The calculations can be also extended to the classical n-vector magnetic model [20]. 758 Behaviour of the order parameter References 1. Pelissetto A., Vicari E., Phys. Reports, 2002, 368, 549. 2. Guttmann A.J., Phase Transitions and Critical Phenomena, edited by Domb C. and Lebowitz J., vol. 13, Academic, New York, 1989. 3. Millev Y.T., Fähnle M., Whitaker M.A.B., J. Magn. Magn. Mater., 1996, 152, 239. 4. Fortunato S., Satz H., Nucl. Phys. Proc. Suppl., 2002, 106, 890. 5. Tarko H.B., Fisher M.E., Phys. Rev. Lett., 1973, 31, 926. 6. Kochmanski M.S., J. Phys. A: Math. Gen., 1999, 32, 1251. 7. Guida R., Zinn-Justin J., Nucl. Phys. B, 1997, 489, 626. 8. Campostrini M., Pelissetto A., Rossi P., Vicari E., Phys. Rev. E, 2002, 65, 066127. 9. Blöte H.W.J., Heringa J.R., Tsypin M.M., Phys. Rev. E, 2000, 62, 77. 10. Engels J., Fromme L., Seniuch M., Nuc. Phys. B, 2003, 655, 277. 11. Tsypin M.M., Phys. Rev. Lett., 1994, 73, 2015. 12. Tsypin M.M., Phys. Rev. B, 1997, 55, 8911. 13. Yukhnovskii I.R. Phase Transitions of the Second Order. Collective Variables Method. World Scientific, Singapore, 1987. 14. Yukhnovskii I.R., Kozlovskii M.P., Pylyuk I.V. Microscopic Theory of Phase Transi- tions in the Three-Dimensional Systems. Eurosvit, Lviv, 2001 (in Ukrainian). 15. Kozlovskii M.P., Pylyuk I.V., Prytula O.O., Condens. Matter Phys., 2004, 7, 361. 16. Kozlovskii M.P., Pylyuk I.V., Prytula O.O. Preprint of the Institute for Condensed Matter Physics, ICMP–04–03U, Lviv, 2004, 32 p. (in Ukrainian). 17. Yukhnovskii I.R., Kozlovskii M.P., Pylyuk I.V., Phys. Rev. B, 2002, 66, 134410. 18. Yuhnovskii I.R., Pylyuk I.V., Kozlovskii M.P., J. Phys.:Condens. Matter, 2002, 14, 11701. 19. Yuhnovskii I.R., Pylyuk I.V., Kozlovskii M.P., J. Phys.:Condens. Matter, 2002, 14, 10113. 20. Usatenko Z.E., Kozlovskii M.P., Phys. Rev. B, 2000, 62, 9599. 759 M.P.Kozlovskii, I.V.Pylyuk, O.O.Prytula Поведінка параметра порядку простого магнетика в зовнішньому полі М.П.Козловський, І.В.Пилюк, О.О.Притула Інститут фізики конденсованих систем НАН України, 79011 Львів, вул. Свєнціцького, 1 Отримано 18 липня 2005 р., в остаточному вигляді – 31 жовтня 2005 р. В рамках непертурбативного методу колективних змінних на основі моделі ρ 4 досліджено вплив зовнішнього поля на критичну пове- дінку тривимірного одновісного магнетика. Дослідження проведені для низькотемпературної області. Отримані аналітичні вирази для вільної енергії, середнього спінового моменту і сприйнятливості у випадку слабких і сильних полів по відношенню до величини поля, що задовільняє рівняння псевдокритичної лінії. Розрахунки проведені на мікроскопічному рівні без застосування допоміжних параметрів. Встановлено, що вирішальну роль у формуванні пе- реходу між температурозалежною і залежною від поля критичною поведінкою системи відіграють довгохвильові флуктуації параметра порядку. Ключові слова: критична точка, параметр порядку, модель Ізинга PACS: 05.50.+q, 05.70.Ce, 64.60.Fr, 75.10.Hk 760