Peculiarities of the temperature dependences of silicon solar cells illuminated with light simulator

Characteristics of basic silicon solar cells are experimentally researched and theoretically modeled using photons of incandescent lamps as sunlight simulator. It was established that increasing temperature evokes significant acceleration of short-circuit current growth. The reason of it is the shif...

Full description

Saved in:
Bibliographic Details
Date:2015
Main Authors: Sachenko, A.V., Kostylyov, V.P., Korkishko, R.M., Kulish, M.R., Sokolovskyi, I.O., Vlasiuk, V.M., Khomenko, D.V.
Format: Article
Language:English
Published: Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України 2015
Series:Semiconductor Physics Quantum Electronics & Optoelectronics
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/121212
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Peculiarities of the temperature dependences of silicon solar cells illuminated with light simulator / A.V. Sachenko, V.P. Kostylyov, R.M. Korkishko, M.R. Kulish, I.O. Sokolovskyi, V.M. Vlasiuk, D.V. Khomenko // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2015. — Т. 18, № 3. — С. 259-266. — Бібліогр.: 18 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:Characteristics of basic silicon solar cells are experimentally researched and theoretically modeled using photons of incandescent lamps as sunlight simulator. It was established that increasing temperature evokes significant acceleration of short-circuit current growth. The reason of it is the shift of simulator spectrum to the higher wavelengths region as compared to the Sun one. This effect leads to a reduction in efficiency decrease for simulated sunlight with the increase of temperature. It should be taken into account in efficiency loss calculation with increase in the operating temperature. It has been shown that the results of theoretical modeling the temperature dependences for the short-circuit current density, open-circuit voltage and photoconversion efficiency are in good agreement with the experimental data obtained using the sunlight simulator. These results could be used to develop methods for investigation of temperature dependences of solar cell characteristics by using various sunlight simulators.