The joint Rouse-Zimm theory of the dynamics of polymers in dilute solutions
We propose a theory of the dynamics of polymers in dilute solution, in which the popular Zimm and Rouse models are just the limiting cases of an infinitely large and small draining parameter. The equation of motion for the polymer segments (beads) is solved together with Brinkman’s equation for th...
Збережено в:
| Опубліковано в: : | Condensed Matter Physics |
|---|---|
| Дата: | 2006 |
| Автори: | , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут фізики конденсованих систем НАН України
2006
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/121288 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | The joint Rouse-Zimm theory of the dynamics of polymers in dilute solutions / V. Lisy, J. Tothova, A. Zatovsky // Condensed Matter Physics. — 2006. — Т. 9, № 1(45). — С. 95-102. — Бібліогр.: 23 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-121288 |
|---|---|
| record_format |
dspace |
| spelling |
Lisy, V. Tothova, J. Zatovsky, A. 2017-06-13T20:29:35Z 2017-06-13T20:29:35Z 2006 The joint Rouse-Zimm theory of the dynamics of polymers in dilute solutions / V. Lisy, J. Tothova, A. Zatovsky // Condensed Matter Physics. — 2006. — Т. 9, № 1(45). — С. 95-102. — Бібліогр.: 23 назв. — англ. 1607-324X PACS: 36.20.Fz, 36.20.-r, 82.35.Lr, 82.37.-j, 83.80.Rs DOI:10.5488/CMP.9.1.95 https://nasplib.isofts.kiev.ua/handle/123456789/121288 We propose a theory of the dynamics of polymers in dilute solution, in which the popular Zimm and Rouse models are just the limiting cases of an infinitely large and small draining parameter. The equation of motion for the polymer segments (beads) is solved together with Brinkman’s equation for the solvent velocity that takes into account the presence of other polymer coils in the solution. The equation for the polymer normal modes is obtained and the relevant time correlation functions are found. A tendency to the time-dependent hydrodynamic screening is demonstrated on the diffusion of the polymers as well as on the relaxation of their internal modes. With the growing concentration of the coils in the solution, they both show a transition to the exactly Rouse behaviour. The shear viscosity of the solution, the Huggins coefficient and other quantities are calculated and shown to be notably different from the known results. This work was supported by the Scientific Grant Agency of the Slovak Republic. en Інститут фізики конденсованих систем НАН України Condensed Matter Physics The joint Rouse-Zimm theory of the dynamics of polymers in dilute solutions Об'єднана теорія Роуза-Зіма динаміки полімерів у розчинах Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
The joint Rouse-Zimm theory of the dynamics of polymers in dilute solutions |
| spellingShingle |
The joint Rouse-Zimm theory of the dynamics of polymers in dilute solutions Lisy, V. Tothova, J. Zatovsky, A. |
| title_short |
The joint Rouse-Zimm theory of the dynamics of polymers in dilute solutions |
| title_full |
The joint Rouse-Zimm theory of the dynamics of polymers in dilute solutions |
| title_fullStr |
The joint Rouse-Zimm theory of the dynamics of polymers in dilute solutions |
| title_full_unstemmed |
The joint Rouse-Zimm theory of the dynamics of polymers in dilute solutions |
| title_sort |
joint rouse-zimm theory of the dynamics of polymers in dilute solutions |
| author |
Lisy, V. Tothova, J. Zatovsky, A. |
| author_facet |
Lisy, V. Tothova, J. Zatovsky, A. |
| publishDate |
2006 |
| language |
English |
| container_title |
Condensed Matter Physics |
| publisher |
Інститут фізики конденсованих систем НАН України |
| format |
Article |
| title_alt |
Об'єднана теорія Роуза-Зіма динаміки полімерів у розчинах |
| description |
We propose a theory of the dynamics of polymers in dilute solution, in which the popular Zimm and Rouse
models are just the limiting cases of an infinitely large and small draining parameter. The equation of motion
for the polymer segments (beads) is solved together with Brinkman’s equation for the solvent velocity that
takes into account the presence of other polymer coils in the solution. The equation for the polymer normal
modes is obtained and the relevant time correlation functions are found. A tendency to the time-dependent
hydrodynamic screening is demonstrated on the diffusion of the polymers as well as on the relaxation of their
internal modes. With the growing concentration of the coils in the solution, they both show a transition to the
exactly Rouse behaviour. The shear viscosity of the solution, the Huggins coefficient and other quantities are
calculated and shown to be notably different from the known results.
|
| issn |
1607-324X |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/121288 |
| citation_txt |
The joint Rouse-Zimm theory of the dynamics of polymers in dilute solutions / V. Lisy, J. Tothova, A. Zatovsky // Condensed Matter Physics. — 2006. — Т. 9, № 1(45). — С. 95-102. — Бібліогр.: 23 назв. — англ. |
| work_keys_str_mv |
AT lisyv thejointrousezimmtheoryofthedynamicsofpolymersindilutesolutions AT tothovaj thejointrousezimmtheoryofthedynamicsofpolymersindilutesolutions AT zatovskya thejointrousezimmtheoryofthedynamicsofpolymersindilutesolutions AT lisyv obêdnanateoríârouzazímadinamíkipolímerívurozčinah AT tothovaj obêdnanateoríârouzazímadinamíkipolímerívurozčinah AT zatovskya obêdnanateoríârouzazímadinamíkipolímerívurozčinah AT lisyv jointrousezimmtheoryofthedynamicsofpolymersindilutesolutions AT tothovaj jointrousezimmtheoryofthedynamicsofpolymersindilutesolutions AT zatovskya jointrousezimmtheoryofthedynamicsofpolymersindilutesolutions |
| first_indexed |
2025-12-07T18:14:54Z |
| last_indexed |
2025-12-07T18:14:54Z |
| _version_ |
1850874312365441024 |