Asymmetric Hubbard model within generating functional approach in dynamical mean field theory
In the paper a new analytic approach to the solution of the effective single-site problem in the dynamical mean field theory is developed. The approach is based on the method of the Kadanoff-Baym generating functional in the form developed by Izyumov et al. It makes it possible to obtain a close...
Збережено в:
| Опубліковано в: : | Condensed Matter Physics |
|---|---|
| Дата: | 2006 |
| Автори: | , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Інститут фізики конденсованих систем НАН України
2006
|
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/121365 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Asymmetric Hubbard model within generating functional approach in dynamical mean field theory / I.V. Stasyuk, O.B. Hera // Condensed Matter Physics. — 2006. — Т. 9, № 3(47). — С. 587–602. — Бібліогр.: 40 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| Резюме: | In the paper a new analytic approach to the solution of the effective single-site problem in the dynamical mean
field theory is developed. The approach is based on the method of the Kadanoff-Baym generating functional in
the form developed by Izyumov et al. It makes it possible to obtain a closed equation in functional derivatives
for the irreducible part of the single-site particle Green’s function; the solution is constructed iteratively. As
an application of the proposed approach the asymmetric Hubbard model (AHM) is considered. The inverse
irreducible part Ξ⁻¹σ of the single-site Green’s function is constructed in the linear approximation with respect
to the coherent potential Jσ. Basing on the obtained result, the Green’s function of itinerant particles in the
Falicov-Kimball limit of AHM is considered, and the decoupling schemes in the equations of motion approach
(GH3 approximation, decoupling by Jeschke and Kotliar) are analysed.
В роботi розвивається новий аналiтичний пiдхiд для розв’язання ефективної одновузлової задачi в
методi динамiчного середнього поля. Пiдхiд ґрунтується на методi твiрного функцiоналу Каданова-Бейма у формi, розробленiй в роботах Iзюмова та iн. Вiн дає можливiсть отримати замкнене рiвняння у функцiональних похiдних для незвiдної частини одновузлової функцiї Грiна частинок; розв’язки
будуються iтеративним способом. В ролi застосування запропонованої схеми взято асиметричну
модель Хаббарда (АМХ). Побудовано обернену незвiдну частину Ξ⁻¹σ одновузлової функцiї Грiна
в лiнiйному наближеннi за когерентним потенцiалом Jσ. Виходячи з отриманого результату, розглянено функцiю Грiна рухомих частинок у границi Фалiкова-Кiмбала АМХ, проаналiзовано схеми
розщеплень у рiвняннях руху для одновузлової функцiї Грiна (наближення GH3, розщеплення ЄшкеКотляра).
|
|---|---|
| ISSN: | 1607-324X |