Target prediction in blast furnace based on BP network optimized by variable neighborhood PSO

This paper combine the improved PSO algorithm (Analysis of Particle Swarm Optimization Algorithm) with the BP neural network for prediction of Silicon content in hot metal. Firstly, the varying visual mechanism is drawing into the standard PSO through changing the neighbor structure dynamically with...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Functional Materials
Дата:2016
Автори: Yang Kai, Zhijun He
Формат: Стаття
Мова:English
Опубліковано: НТК «Інститут монокристалів» НАН України 2016
Теми:
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/121413
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Target prediction in blast furnace based on BP network optimized by variable neighborhood PSO / Yang Kai, Zhijun He // Functional Materials. — 2016. — Т. 23, № 3. — С. 463-467. — Бібліогр.: 8 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:This paper combine the improved PSO algorithm (Analysis of Particle Swarm Optimization Algorithm) with the BP neural network for prediction of Silicon content in hot metal. Firstly, the varying visual mechanism is drawing into the standard PSO through changing the neighbor structure dynamically with each particles, in order to enhance the local and global searching ability in particle swarm. Afterwards, the improved algorithm is used to optimize the weights and threshold of BP neural network to avoid falling into local extremum. Finally, the prediction model of Si content in hot metal is built based on BP network optimized by Variable neighborhood PSO. The average relative error of the prediction model is 6.7% based on the data from blast furnace.
ISSN:1027-5495