Stamp stress analysis with low temperature nanoimprint lithography

High temperature nanoimprint lithography has the drawback of long process cycle, demoulding difficulty, polymer degradation, thermal stress. Low temperature nanoimprint lithography (LTNIL) can avoid these problems. LTNIL is also ideal for manufacturing biological compatibility samples since the samp...

Full description

Saved in:
Bibliographic Details
Published in:Functional Materials
Date:2016
Main Authors: Hongwen Sun, Xiaochao Ma, Chenhui Hu
Format: Article
Language:English
Published: НТК «Інститут монокристалів» НАН України 2016
Subjects:
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/121489
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Stamp stress analysis with low temperature nanoimprint lithography / Hongwen Sun, Xiaochao Ma, Chenhui Hu // Functional Materials. — 2016. — Т. 23, № 3. — С. 517-520. — Бібліогр.: 11 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-121489
record_format dspace
spelling Hongwen Sun
Xiaochao Ma
Chenhui Hu
2017-06-14T12:52:36Z
2017-06-14T12:52:36Z
2016
Stamp stress analysis with low temperature nanoimprint lithography / Hongwen Sun, Xiaochao Ma, Chenhui Hu // Functional Materials. — 2016. — Т. 23, № 3. — С. 517-520. — Бібліогр.: 11 назв. — англ.
1027-5495
DOI: dx.doi.org/10.15407/fm23.03.517
https://nasplib.isofts.kiev.ua/handle/123456789/121489
High temperature nanoimprint lithography has the drawback of long process cycle, demoulding difficulty, polymer degradation, thermal stress. Low temperature nanoimprint lithography (LTNIL) can avoid these problems. LTNIL is also ideal for manufacturing biological compatibility samples since the samples do not sustain high temperature. However, LTNIL need to optimize the press parameters in order to fully transfer patterns. Finite Element Method (FEM) is an excellent approach to examine the filling process. The stamp stress was simulated from four points of view, imprint pressure, imprint temperature, stamp pattern and stamp material. It was found that the stress in the stamp corners is especially bigger than other areas, the stress increases with the stamps aspect ratio increases, and stress distribution is more uniform for dense pattern stamp.
en
НТК «Інститут монокристалів» НАН України
Functional Materials
Technology
Stamp stress analysis with low temperature nanoimprint lithography
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Stamp stress analysis with low temperature nanoimprint lithography
spellingShingle Stamp stress analysis with low temperature nanoimprint lithography
Hongwen Sun
Xiaochao Ma
Chenhui Hu
Technology
title_short Stamp stress analysis with low temperature nanoimprint lithography
title_full Stamp stress analysis with low temperature nanoimprint lithography
title_fullStr Stamp stress analysis with low temperature nanoimprint lithography
title_full_unstemmed Stamp stress analysis with low temperature nanoimprint lithography
title_sort stamp stress analysis with low temperature nanoimprint lithography
author Hongwen Sun
Xiaochao Ma
Chenhui Hu
author_facet Hongwen Sun
Xiaochao Ma
Chenhui Hu
topic Technology
topic_facet Technology
publishDate 2016
language English
container_title Functional Materials
publisher НТК «Інститут монокристалів» НАН України
format Article
description High temperature nanoimprint lithography has the drawback of long process cycle, demoulding difficulty, polymer degradation, thermal stress. Low temperature nanoimprint lithography (LTNIL) can avoid these problems. LTNIL is also ideal for manufacturing biological compatibility samples since the samples do not sustain high temperature. However, LTNIL need to optimize the press parameters in order to fully transfer patterns. Finite Element Method (FEM) is an excellent approach to examine the filling process. The stamp stress was simulated from four points of view, imprint pressure, imprint temperature, stamp pattern and stamp material. It was found that the stress in the stamp corners is especially bigger than other areas, the stress increases with the stamps aspect ratio increases, and stress distribution is more uniform for dense pattern stamp.
issn 1027-5495
url https://nasplib.isofts.kiev.ua/handle/123456789/121489
citation_txt Stamp stress analysis with low temperature nanoimprint lithography / Hongwen Sun, Xiaochao Ma, Chenhui Hu // Functional Materials. — 2016. — Т. 23, № 3. — С. 517-520. — Бібліогр.: 11 назв. — англ.
work_keys_str_mv AT hongwensun stampstressanalysiswithlowtemperaturenanoimprintlithography
AT xiaochaoma stampstressanalysiswithlowtemperaturenanoimprintlithography
AT chenhuihu stampstressanalysiswithlowtemperaturenanoimprintlithography
first_indexed 2025-11-25T21:02:32Z
last_indexed 2025-11-25T21:02:32Z
_version_ 1850545525079670784
fulltext Functional materials, 23, 3, 2016 517 ISSN 1027-5495. Functional Materials, 23, No.3 (2016), p. 517-520 doi:http://dx.doi.org/10.15407/fm23.03.517 © 2016 — STC “Institute for Single Crystals” Stamp stress analysis with low temperature nanoimprint lithography Hongwen Sun,� ���o���o ��,� ��en�u� Hu ���o���o ��,� ��en�u� Hu���o���o ��,� ��en�u� Hu College of Internet of Things Engineering, Hohai University, Changzhou, Jiangsu, 213022, P.R. China Received March 22, 2016 High temperature nanoimprint lithography has the drawback of long process cycle, demoulding difficulty, polymer degradation, thermal stress. Low temperature nanoimprint lithography (LTNIL) can avoid these problems. LTNIL is also ideal for manufacturing biological compatibility samples since the samples do not sustain high temperature. However, LTNIL need to optimize the press parameters in order to fully transfer patterns. Finite Element Method (FEM) is an excellent approach to examine the filling process. The stamp stress was simulated from four points of view, imprint pressure, imprint temperature, stamp pattern and stamp material. It was found that the stress in the stamp corners is especially bigger than other areas, the stress increases with the stamp’s aspect ratio increases, and stress distribution is more uniform for dense pattern stamp. Keywords: Hot embossing lithography, nanoimprint lithography,low temperature, stamp, stress, finite element method. Высокотемпературная нанопечатная литография имеет такие недостатки как длитель- ный цикл процесса, сложность деформации, деградация полимера, термические напряже- ния. Низкотемпературная нанопечатная литография (LTNIL) может помочь преодолеть эти проблемы. LTNIL также идеальная для производства биологически совместимых образцов, потому что образцы не испытывают влияния высокой температуры. Однако, LTNIL требует оптимизации параметров печати, чтобы достичь полной передачи рисунка. Метод конечных элементов (FEM) - прекрасный метод для исследования процесса нагрузок. Напряжения в штампе были промоделированы с четырех точек зрения: давление печати, температура пе- чати, рисунок штампа и материал штампа. Было найдено, что напряжения в углах штампа значительно выше, чем в других областях, напряжения растут с ростом соотношения сторон штампа, распределение напряжений более однородно для плотного рисунка штампа. Аналіз напруги, що виникає при низкотемпературой нанодрукарської літогра- фії. Хонгвэн Сан, Сяочао Ma, Чэнху Ху Високотемпературна нанопечатная літографія має такі недоліки як тривалий цикл процесу, складність деформування, деградація полімеру, термічні напруги. Низькотемпе- ратурна нанопечатная літографія (LTNIL) може допомогти подолати ці проблеми. LTNIL також ідеальна для виробництва біологічно сумісних зразків, тому що зразки не зазнають впливу високої температури. Однак, LTNIL вимагає оптимізації параметрів друку, щоб до- сягти повної передачі малюнка. Метод кінцевих елементів (FEM) - прекрасний метод для дослідження процесу навантаження. Напруження в штампі були промодельовані з чотирь- ох точок зору, тиск друку, температура друку, малюнок штампа і матеріал штампа. Було знайдено, що напруги в кутах штампа значно вище, ніж в інших областях, напруги зроста- ють зі зростанням співвідношення сторін штампа, розподіл напруг більш однорідний для щільного малюнка штампа. 518 Functional materials, 23, 3, 2016 Hongwen Sun et al. / Stamp stress analysis with low temperature ... 1. Introduction Hot embossing lithography (HEL), one of the common nanoimprint lithography (NIL) technique, has the advantage of high resolu- tion, high uniformity and low cost [1]. Howev- er, high temperature the process needed leads to many disadvantages, such as long process cycle, demoulding difficulty, polymer degrada- tion, thermal stress and not suitable for part of substrates heating [2]. Low temperature na- noimprint lithography (LTNIL) can avoid the above drawbacks [3,4]. LTNIL can be widely used in the area of biology, medical science, and organic light-emitting because the polymers applied in these areas cannot sustain high tem- perature [5,6]. There are some researchers conducted the study of LTNIL. Scheer et al. researched the polymer time constants during LTNIL [7]. Chen et al. imprited metal films by NIl with both low temperature and low pressure [8]. They imprinted SU-8 at 45°C and NEB-22 at 60°C. Lu et al. even patterned poly(acrylic acid)/Poly(allylamine hydrochloride) multilay- er films by room temperature imprinting [9]. To save cost and time, it is necessary to study the LTNIL process by modeling and simulation. Kim et al. used a viscoelastic model to simulate low temperature NIL with temperature range Tg < T < Tg + 40°C [10]. Song et al. researched room temperature NIL by simulating different imprinting speeds and patterns [11]. However, there are few references studying the stamp stress by simulation. This contribution applied Finite Element Method (FEM) to research the stress of nanoimprint stamp at low tempera- ture. 2. Modeling The FEM software ANSYS was used to set up modeling. The element type of stamp is Plane42 and element type Hyper56 for the re- sist. Fig. (1) shows one of our models. The length of the groove is 300nm and depth is 50nm. The thickness of the resist is 100nm. The common used resist Poly(methyl meth- acrylate) (PMMA) was taken as the resist in the simulation. For stamps, different materi- als, silicon (Si) and nickel (Ni) was used for comparison purpose. The parameters of them were shown in Table 1. 3. �e�ult� �nd �i�cu��ion. �e�ult� �nd �i�cu��ion�e�ult� �nd �i�cu��ion 3.1 I��rint �re��ure ��ri�tion.1 I��rint �re��ure ��ri�tionI��rint �re��ure ��ri�tion Firstly, 5GPa was applied to the above mod- el. The stress distribution under 400K was giv- en in Fig. (2). From the figure, it can be found that the resist filled the stamp well. The stress in the borders between the stamp and the re- sist are obviously larger than the inner area. The stress in the corners is especially bigger than other areas. The central area has the low- est stress. To further lower the stress, it is necessary to find the minimum pressure needed to help the resist fully fill the stamp cavities. After sev- eral simulation, we found 1.7GPa is the proper pressure for the combination of Ni stamp and PMMA resist at 400K. Although, the stress distribution is similar to the above 5GPa situ- Fig. 1. Typical FEM Model (above is the stamp with one groove and the bottom is the resist). Table 1. Parameters of �ifferent Nanoimprint StampsParameters of �ifferent Nanoimprint Stamps Material Elastic modulus, GPa Poisson’s ratio �ensity, kg/m3 Thermal conductivity coefficient Specific heat capacity, J/kg Ni 207 0.29 8900 71.4 460 Si 190 0.30 2330 149.0 700 Fig. 2. Stamp stress distribution with 5GPa pressure and 400K. Functional materials, 23, 3, 2016 519 Hongwen Sun et al. / Stamp stress analysis with low temperature ... ation, the imprint time increases when the im- print force decreases. 3.2 I��rint Te��er�ture ��ri�tion To simulate the stress of the stamp in NIL with different temperatures, we analyzed the stamp stress with temperature at 390K, 400K and 410K. Fig. 3 shows the stress change dur- ing the imprint for four different points in the stamp under 390K. For three temperatures, the stress distribu- tion shows little variation. Therefore, it can be concluded that the temperature has little effect on the stamp stress when imprint is conducted under low temperature, which is still greater than the glass transition temperature of the resist. 3.3 I��rint Te��er�ture ��ri�tion.3 I��rint Te��er�ture ��ri�tion3 I��rint Te��er�ture ��ri�tion I��rint Te��er�ture ��ri�tionI��rint Te��er�ture ��ri�tion Another three grooves pattern structure was designed and simulated for further research the relationship between the stamp's pattern structure and the stress after imprinting. Fig- ure 4 gives the three grooves model. The length of each groove is 100 nm and depth is still 50 nm. The thickness of the resist is 100 nm. Fig.. 4 also shows the stress distribution with the imprint condition of temperature 400 K and pressure 5 GPa. From Fig. 4, it can found that the mini-. 4, it can found that the mini-4, it can found that the mini- mum and maximum stress is 0.472´108 Pa and 0.124´1011 Pa, respectively, which is both larger than the minimum and maximum stress in one groove stamp situation. It means that when the stamp's aspect ratio increases, the stress will increase corresponding. For comparison, the typical four points were chosen again to show the stress change with imprint time. These four points are at the same place as in Section 3.2. Fig. (5) shows the cor- responding stress change with imprint time. It can be noticed that stress distribution is more uniform for three groove stamp, which means the stress of different places does not vary too much. 3.�� �t��� M�teri�l ��ri�tion.�� �t��� M�teri�l ��ri�tion�� �t��� M�teri�l ��ri�tion �t��� M�teri�l ��ri�tion�t��� M�teri�l ��ri�tion For analyzing the stress after NIL using dif- ferent stamp materials, the first model with one groove was chosen. In general, the stress distri- bution of Ni and Si stamp has similar charac- teristics. However, when finding the minimum pressure in order to fully fill the cavity of the stamp, we found 1.5G Pa is the proper pres- sure for the Si stamp and PMMA resist at 400K, which is lower than the situation of Ni stamp. This can be explained by that the hardness of Si is larger than Ni. ��. Conclu�ion� Low temperature nanoimprint lithography can reduce thermal cycle and stress. They can be widely used in different areas, especially in the medical and organic lighting areas since the sample substrate needn't suffer high tem- perature. Analyzing LTNIL by Finite Element Method can save time and cost. The stamp stress was simulated from four points of view, that is Imprint Pressure, Imprint Tempera- ture, Stamp Pattern and Stamp Material. The Fig. 3. Stress change during the imprint for four typical points in the stamp under 390K. Fig. 4. Three grooves stamp model and stress distribution with the imprint condition of tem- perature 400K and pressure 5 GPa. Fig. 5. Four points’ stress change with imprint time using three grooves stamp. 520 Functional materials, 23, 3, 2016 Hongwen Sun et al. / Stamp stress analysis with low temperature ... stress in the borders of the stamp is obviously larger than the inner stamp area. When the stamp's aspect ratio increases, the stress will increase corresponding. The stress distribution is more uniform for dense stamp patterns. The stress distribution of Ni and Si stamp is simi- lar. However, the Si stamp has smaller mini- mum pressure in order to fully fill the cavity of the stamp. Acknowledge�ent� This research was supported by “the Funda- mental Research Funds for the Central Univer- sities” with project No. 2015B22514. �eference� 1. S.Y. Chou, P. R. Krauss, P. J. Renstrom, Chou, P. R. Krauss, P. J. Renstrom,Chou, P. R. Krauss, P. J. Renstrom, Krauss, P. J. Renstrom,Krauss, P. J. Renstrom, �enstrom,�enstrom,, Appl. Phys.Lett., 67, 3114, 1995.3114, 1995., 1995.1995.. 2. C.M. Sotomayor Torres, S. Zankovych, et al.,, Mater. Scie. Engin., 23, 23, 2003.2003. 3. M.M. Alkaisi, R.J. Blaikie, S. J. McNab, J. McNab,J. McNab, Micro- electron. Eng., 57–58, 367, 2001. 367, 2001., 2001. 4. N.Ikutame, K. Kawaguchi, H. Ikeda, et al.,N.Ikutame, K. Kawaguchi, H. Ikeda, et al.,Ikutame, K. Kawaguchi, H. Ikeda, et al.,K. Kawaguchi, H. Ikeda, et al.,Kawaguchi, H. Ikeda, et al.,H. Ikeda, et al.,Ikeda, et al.,et al., J. Appl. Phys., 114, 083514, 2013.083514, 2013., 2013.2013.. 5. A.Pepin, P. Youinou, �. Studer, et al.,. Youinou, �. Studer, et al., Youinou, �. Studer, et al.,�. Studer, et al.,Studer, et al., Microelec- tron. Eng.. Eng. Eng.., 61-62, 927, 2002.927, 2002., 2002.2002.. 6. J. Kettle, S. Whitelegg, A. M. Song, et al.,. Kettle, S. Whitelegg, A. M. Song, et al., Kettle, S. Whitelegg, A. M. Song, et al.,. Whitelegg, A. M. Song, et al., Whitelegg, A. M. Song, et al.,. M. Song, et al., M. Song, et al.,. Song, et al., Song, et al., Nano- technology, 21, 075301, 2010.075301, 2010., 2010.2010.. 7. H.C. Scheer, N. Bogdanski, M. Wissen, et al.,7. H.C. Scheer, N. Bogdanski, M. Wissen, et al., J. Vac. Sci. Technol. B: Microelectron. Nanomet. Struct., 23, 2963, 2005. 8. H.L. Chen, S. Y. Chuang, H. C. Cheng, et al.,8. H.L. Chen, S. Y. Chuang, H. C. Cheng, et al.,. H.L. Chen, S. Y. Chuang, H. C. Cheng, et al., Y. Chuang, H. C. Cheng, et al.,Y. Chuang, H. C. Cheng, et al., C. Cheng, et al.,C. Cheng, et al.,, et al.,et al., Microelectro. Eng. Eng.Eng., 83, 893, 2006.893, 2006., 2006.2006.. 9. Y. Lu, J. Sun, J. Shen,,9. Y. Lu, J. Sun, J. Shen,,. Y. Lu, J. Sun, J. Shen,,. Lu, J. Sun, J. Shen,, Lu, J. Sun, J. Shen,, J. Sun, J. Shen,,J. Sun, J. Shen,,. Sun, J. Shen,, Sun, J. Shen,, J. Shen,,J. Shen,,. Shen,, Shen,,, Langmuir, 24, 80�0,80�0,, 2008. 10. N.W. Kim, K.W. Kim, H.C. Sin,. N.W. Kim, K.W. Kim, H.C. Sin,.W. Kim, K.W. Kim, H.C. Sin,W. Kim, K.W. Kim, H.C. Sin,. Kim, K.W. Kim, H.C. Sin, Kim, K.W. Kim, H.C. Sin,.W. Kim, H.C. Sin,W. Kim, H.C. Sin,. Kim, H.C. Sin, Kim, H.C. Sin, H.C. Sin,H.C. Sin,.C. Sin,C. Sin,. Sin, Sin,, Microelectron. Eng., 85, 1858, 2008.1858, 2008., 2008.2008.. 11. J.H. Song, H. Huh, S.H. Kim, H.T. Hahn,. J.H. Song, H. Huh, S.H. Kim, H.T. Hahn,J.H. Song, H. Huh, S.H. Kim, H.T. Hahn, Mater. Sci. Forum, 505-507, 85, 2006.