Landau parameter of elasticity

Based on the consideration given by the Ginzburg-Landau (GL) theory according to the variational principle, we assume that the microscopic Gibbs function density given by [1] ∫VGsdV = ∫(Fs - 1/4pBH)dv must be stationary at the thermodynamical equilibrium. To describe the universal propagation of th...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Semiconductor Physics Quantum Electronics & Optoelectronics
Дата:2006
Автори: Merabtine, N., Bousnane, Z., Benslama, M., Boussaad, F.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України 2006
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/121610
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Landau parameter of elasticity / N. Merabtine, Z. Bousnane, M. Benslama, F. Boussaad // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2006. — Т. 9, № 3. — С. 1-3. — Бібліогр.: 4 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-121610
record_format dspace
spelling Merabtine, N.
Bousnane, Z.
Benslama, M.
Boussaad, F.
2017-06-15T02:58:48Z
2017-06-15T02:58:48Z
2006
Landau parameter of elasticity / N. Merabtine, Z. Bousnane, M. Benslama, F. Boussaad // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2006. — Т. 9, № 3. — С. 1-3. — Бібліогр.: 4 назв. — англ.
1560-8034
PACS 74.20.-z
https://nasplib.isofts.kiev.ua/handle/123456789/121610
Based on the consideration given by the Ginzburg-Landau (GL) theory according to the variational principle, we assume that the microscopic Gibbs function density given by [1] ∫VGsdV = ∫(Fs - 1/4pBH)dv must be stationary at the thermodynamical equilibrium. To describe the universal propagation of the order parameter, we express order phases and amplitudes as dealing with tensor elements. In addition to the variation of the order parameter and the vector potential limited by the condition )()( xBxArrr =×∇ , we introduce here the concept of elasticity to describe the propagation of the superconducting state as “the little waves borning on smooth Superconductor Sea [2]”. The coherence concept transits to the asymptotic behaviour, we shall say that equivalence concept is its limit, this must transgress the propagation laws of superconductivity to be replaced by the increasing of superconductivity. Superconductivity will be viewed as second order extensive value, propagation seems to be so quick to avoid the stability, the increasing of superconductivity requires more time, and more time will be equivalent to a second and added measurement process eliminating the degeneracy of the first integral during the cooling process. It may deal with the first approximated stability of Superconductor State. The uncertainly in quantum mechanics is limited as scale length relations for the dimension coherence of the order parameter and temperatures.
en
Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України
Semiconductor Physics Quantum Electronics & Optoelectronics
Landau parameter of elasticity
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Landau parameter of elasticity
spellingShingle Landau parameter of elasticity
Merabtine, N.
Bousnane, Z.
Benslama, M.
Boussaad, F.
title_short Landau parameter of elasticity
title_full Landau parameter of elasticity
title_fullStr Landau parameter of elasticity
title_full_unstemmed Landau parameter of elasticity
title_sort landau parameter of elasticity
author Merabtine, N.
Bousnane, Z.
Benslama, M.
Boussaad, F.
author_facet Merabtine, N.
Bousnane, Z.
Benslama, M.
Boussaad, F.
publishDate 2006
language English
container_title Semiconductor Physics Quantum Electronics & Optoelectronics
publisher Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України
format Article
description Based on the consideration given by the Ginzburg-Landau (GL) theory according to the variational principle, we assume that the microscopic Gibbs function density given by [1] ∫VGsdV = ∫(Fs - 1/4pBH)dv must be stationary at the thermodynamical equilibrium. To describe the universal propagation of the order parameter, we express order phases and amplitudes as dealing with tensor elements. In addition to the variation of the order parameter and the vector potential limited by the condition )()( xBxArrr =×∇ , we introduce here the concept of elasticity to describe the propagation of the superconducting state as “the little waves borning on smooth Superconductor Sea [2]”. The coherence concept transits to the asymptotic behaviour, we shall say that equivalence concept is its limit, this must transgress the propagation laws of superconductivity to be replaced by the increasing of superconductivity. Superconductivity will be viewed as second order extensive value, propagation seems to be so quick to avoid the stability, the increasing of superconductivity requires more time, and more time will be equivalent to a second and added measurement process eliminating the degeneracy of the first integral during the cooling process. It may deal with the first approximated stability of Superconductor State. The uncertainly in quantum mechanics is limited as scale length relations for the dimension coherence of the order parameter and temperatures.
issn 1560-8034
url https://nasplib.isofts.kiev.ua/handle/123456789/121610
citation_txt Landau parameter of elasticity / N. Merabtine, Z. Bousnane, M. Benslama, F. Boussaad // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2006. — Т. 9, № 3. — С. 1-3. — Бібліогр.: 4 назв. — англ.
work_keys_str_mv AT merabtinen landauparameterofelasticity
AT bousnanez landauparameterofelasticity
AT benslamam landauparameterofelasticity
AT boussaadf landauparameterofelasticity
first_indexed 2025-11-29T05:05:48Z
last_indexed 2025-11-29T05:05:48Z
_version_ 1850854536663531520