The logical closure limit of superconductivity descriptions

The quantum description of macroscopic behaviour seems requiring the existence of limits imposed by the consideration hold on the logical closure of the theory, according to this, the J.A. Wheeler black box [1] will act under a coherence length of second order. The use of mathematical beings transl...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Semiconductor Physics Quantum Electronics & Optoelectronics
Дата:2006
Автори: Bousnane, Z., Merabtine, N., Benslama, M., Boussaad, F.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України 2006
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/121635
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:The logical closure limit of superconductivity descriptions / Z. Bousnane, N. Merabtine, M. Benslama, F. Boussaad // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2006. — Т. 9, № 4. — С. 65-66. — Бібліогр.: 3 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-121635
record_format dspace
spelling Bousnane, Z.
Merabtine, N.
Benslama, M.
Boussaad, F.
2017-06-15T03:37:50Z
2017-06-15T03:37:50Z
2006
The logical closure limit of superconductivity descriptions / Z. Bousnane, N. Merabtine, M. Benslama, F. Boussaad // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2006. — Т. 9, № 4. — С. 65-66. — Бібліогр.: 3 назв. — англ.
1560-8034
PACS 74.25.Bt
https://nasplib.isofts.kiev.ua/handle/123456789/121635
The quantum description of macroscopic behaviour seems requiring the existence of limits imposed by the consideration hold on the logical closure of the theory, according to this, the J.A. Wheeler black box [1] will act under a coherence length of second order. The use of mathematical beings translating the phases transitions in nature are displayed in one-way, the reversibility parameter associated to the black box is severely limited according to the way we disturb the constants and the functions used to describe a given phenomenon. The combinatory formulation of matter is always accompanied by the length scales orientation phenomenon that must be seen as a measurement process of second order. The non-reproducibility of experiments will be dealing with the non-account of the amplitude of length scales interactions, this amplitude manages the combinatory of macroscopic levels between an observer and observed. Some introduced concepts as an entropic potential, the breaking of equivalence are making the emergence of picture of superconductivity as reproducible phenomenon according to the “intrinsic states reproducibility” with number estimated on universal constants expressions limited by the difference between cooled and cooling.
en
Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України
Semiconductor Physics Quantum Electronics & Optoelectronics
The logical closure limit of superconductivity descriptions
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title The logical closure limit of superconductivity descriptions
spellingShingle The logical closure limit of superconductivity descriptions
Bousnane, Z.
Merabtine, N.
Benslama, M.
Boussaad, F.
title_short The logical closure limit of superconductivity descriptions
title_full The logical closure limit of superconductivity descriptions
title_fullStr The logical closure limit of superconductivity descriptions
title_full_unstemmed The logical closure limit of superconductivity descriptions
title_sort logical closure limit of superconductivity descriptions
author Bousnane, Z.
Merabtine, N.
Benslama, M.
Boussaad, F.
author_facet Bousnane, Z.
Merabtine, N.
Benslama, M.
Boussaad, F.
publishDate 2006
language English
container_title Semiconductor Physics Quantum Electronics & Optoelectronics
publisher Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України
format Article
description The quantum description of macroscopic behaviour seems requiring the existence of limits imposed by the consideration hold on the logical closure of the theory, according to this, the J.A. Wheeler black box [1] will act under a coherence length of second order. The use of mathematical beings translating the phases transitions in nature are displayed in one-way, the reversibility parameter associated to the black box is severely limited according to the way we disturb the constants and the functions used to describe a given phenomenon. The combinatory formulation of matter is always accompanied by the length scales orientation phenomenon that must be seen as a measurement process of second order. The non-reproducibility of experiments will be dealing with the non-account of the amplitude of length scales interactions, this amplitude manages the combinatory of macroscopic levels between an observer and observed. Some introduced concepts as an entropic potential, the breaking of equivalence are making the emergence of picture of superconductivity as reproducible phenomenon according to the “intrinsic states reproducibility” with number estimated on universal constants expressions limited by the difference between cooled and cooling.
issn 1560-8034
url https://nasplib.isofts.kiev.ua/handle/123456789/121635
citation_txt The logical closure limit of superconductivity descriptions / Z. Bousnane, N. Merabtine, M. Benslama, F. Boussaad // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2006. — Т. 9, № 4. — С. 65-66. — Бібліогр.: 3 назв. — англ.
work_keys_str_mv AT bousnanez thelogicalclosurelimitofsuperconductivitydescriptions
AT merabtinen thelogicalclosurelimitofsuperconductivitydescriptions
AT benslamam thelogicalclosurelimitofsuperconductivitydescriptions
AT boussaadf thelogicalclosurelimitofsuperconductivitydescriptions
AT bousnanez logicalclosurelimitofsuperconductivitydescriptions
AT merabtinen logicalclosurelimitofsuperconductivitydescriptions
AT benslamam logicalclosurelimitofsuperconductivitydescriptions
AT boussaadf logicalclosurelimitofsuperconductivitydescriptions
first_indexed 2025-12-07T17:37:32Z
last_indexed 2025-12-07T17:37:32Z
_version_ 1850871961890062336