Electronic and magnetic properties of graphite quantum dots

We study the electronic and magnetic properties of multilayer quantum dots (MQDs) of graphite in the nearest-neighbor approximation of tight-binding model. We calculate the electronic density of states and orbital susceptibility of the system as function of the Fermi level location. We demonstrate t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2015
Hauptverfasser: Abdelsalam, H., Espinosa-Ortega, T., Luk’yanchuk, I.
Format: Artikel
Sprache:English
Veröffentlicht: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна НАН України 2015
Schriftenreihe:Физика низких температур
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/122084
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Electronic and magnetic properties of graphite quantum dots / H. Abdelsalam, T. Espinosa-Ortega, I. Luk’yanchuk // Физика низких температур. — 2015. — Т. 41, № 5. — С. 508-513. — Бібліогр.: 31 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:We study the electronic and magnetic properties of multilayer quantum dots (MQDs) of graphite in the nearest-neighbor approximation of tight-binding model. We calculate the electronic density of states and orbital susceptibility of the system as function of the Fermi level location. We demonstrate that properties of MQD depend strongly on the shape of the system, on the parity of the layer number and on the form of the cluster edge. The special emphasis is given to reveal the new properties with respect to the monolayer graphene quantum dots. The most interesting results are obtained for the triangular MQD with zig-zag edge at near-zero energies. The asymmetrically smeared multipeak feature is observed at Dirac point within the size-quantized energy gap region, where monolayer graphene flakes demonstrate the highly-degenerate zero-energy state. This feature, provided by the edge-localized electronic states results in the splash-wavelet behavior in diamagnetic orbital susceptibility as function of energy.