A fuel cycle for minor actinides burning in a stellarator-mirror fusion-fission hybrid
The MCNPX Monte-Carlo code has been used to model a concept of a fusion-fission stellarator-mirror hybrid aimed for transmutation transuranic content from the spent nuclear fuel. A fuel cycle for the subcritical fusion-fission hybrid is investigated and discussed. С использованием Монте-Карловского...
Saved in:
| Published in: | Вопросы атомной науки и техники |
|---|---|
| Date: | 2017 |
| Main Authors: | , , , |
| Format: | Article |
| Language: | English |
| Published: |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України
2017
|
| Subjects: | |
| Online Access: | https://nasplib.isofts.kiev.ua/handle/123456789/122123 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Journal Title: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Cite this: | A fuel cycle for minor actinides burning in a stellarator-mirror fusion-fission hybrid / S.V. Chernitskiy, V.E. Moiseenko, O. Ågren, K. Noack // Вопросы атомной науки и техники. — 2017. — № 1. — С. 36-39. — Бібліогр.: 17 назв. — англ. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-122123 |
|---|---|
| record_format |
dspace |
| spelling |
Chernitskiy, S.V. Moiseenko, V.E. Ågren, O. Noack, K. 2017-06-27T18:01:38Z 2017-06-27T18:01:38Z 2017 A fuel cycle for minor actinides burning in a stellarator-mirror fusion-fission hybrid / S.V. Chernitskiy, V.E. Moiseenko, O. Ågren, K. Noack // Вопросы атомной науки и техники. — 2017. — № 1. — С. 36-39. — Бібліогр.: 17 назв. — англ. 1562-6016 https://nasplib.isofts.kiev.ua/handle/123456789/122123 PACS: 52.55.Hc The MCNPX Monte-Carlo code has been used to model a concept of a fusion-fission stellarator-mirror hybrid aimed for transmutation transuranic content from the spent nuclear fuel. A fuel cycle for the subcritical fusion-fission hybrid is investigated and discussed. С использованием Монте-Карловского кода MCNPX разработана модель гибридного реактора на основе комбинации стелларатора и открытой ловушки для трансмутации трансурановых изотопов из отработавшего ядерного топлива. Исследуется и обсуждается топливный цикл для подкритического гибридного реактора. За допомогою Монте-Карлівського коду MCNPX розроблена модель гібридного ректора на основі комбінації стеларатора та відкритої пастки для трансмутації трансуранових ізотопів з відпрацьованого ядерного палива. Досліджується та обговорюється паливний цикл для підкритичного гібридного реактора. en Національний науковий центр «Харківський фізико-технічний інститут» НАН України Вопросы атомной науки и техники Магнитное удержание A fuel cycle for minor actinides burning in a stellarator-mirror fusion-fission hybrid Топливный цикл для выжигания минорных актинидов в гибридном реакторе на основе стелларатора со встроенной открытой ловушкой Паливний цикл для вигорання мінорних актинідів у гібридному реакторі на основі стеларатора та відкритої пастки Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
A fuel cycle for minor actinides burning in a stellarator-mirror fusion-fission hybrid |
| spellingShingle |
A fuel cycle for minor actinides burning in a stellarator-mirror fusion-fission hybrid Chernitskiy, S.V. Moiseenko, V.E. Ågren, O. Noack, K. Магнитное удержание |
| title_short |
A fuel cycle for minor actinides burning in a stellarator-mirror fusion-fission hybrid |
| title_full |
A fuel cycle for minor actinides burning in a stellarator-mirror fusion-fission hybrid |
| title_fullStr |
A fuel cycle for minor actinides burning in a stellarator-mirror fusion-fission hybrid |
| title_full_unstemmed |
A fuel cycle for minor actinides burning in a stellarator-mirror fusion-fission hybrid |
| title_sort |
fuel cycle for minor actinides burning in a stellarator-mirror fusion-fission hybrid |
| author |
Chernitskiy, S.V. Moiseenko, V.E. Ågren, O. Noack, K. |
| author_facet |
Chernitskiy, S.V. Moiseenko, V.E. Ågren, O. Noack, K. |
| topic |
Магнитное удержание |
| topic_facet |
Магнитное удержание |
| publishDate |
2017 |
| language |
English |
| container_title |
Вопросы атомной науки и техники |
| publisher |
Національний науковий центр «Харківський фізико-технічний інститут» НАН України |
| format |
Article |
| title_alt |
Топливный цикл для выжигания минорных актинидов в гибридном реакторе на основе стелларатора со встроенной открытой ловушкой Паливний цикл для вигорання мінорних актинідів у гібридному реакторі на основі стеларатора та відкритої пастки |
| description |
The MCNPX Monte-Carlo code has been used to model a concept of a fusion-fission stellarator-mirror hybrid aimed for transmutation transuranic content from the spent nuclear fuel. A fuel cycle for the subcritical fusion-fission hybrid is investigated and discussed.
С использованием Монте-Карловского кода MCNPX разработана модель гибридного реактора на основе комбинации стелларатора и открытой ловушки для трансмутации трансурановых изотопов из отработавшего ядерного топлива. Исследуется и обсуждается топливный цикл для подкритического гибридного реактора.
За допомогою Монте-Карлівського коду MCNPX розроблена модель гібридного ректора на основі комбінації стеларатора та відкритої пастки для трансмутації трансуранових ізотопів з відпрацьованого ядерного палива. Досліджується та обговорюється паливний цикл для підкритичного гібридного реактора.
|
| issn |
1562-6016 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/122123 |
| citation_txt |
A fuel cycle for minor actinides burning in a stellarator-mirror fusion-fission hybrid / S.V. Chernitskiy, V.E. Moiseenko, O. Ågren, K. Noack // Вопросы атомной науки и техники. — 2017. — № 1. — С. 36-39. — Бібліогр.: 17 назв. — англ. |
| work_keys_str_mv |
AT chernitskiysv afuelcycleforminoractinidesburninginastellaratormirrorfusionfissionhybrid AT moiseenkove afuelcycleforminoractinidesburninginastellaratormirrorfusionfissionhybrid AT agreno afuelcycleforminoractinidesburninginastellaratormirrorfusionfissionhybrid AT noackk afuelcycleforminoractinidesburninginastellaratormirrorfusionfissionhybrid AT chernitskiysv toplivnyicikldlâvyžiganiâminornyhaktinidovvgibridnomreaktorenaosnovestellaratorasovstroennoiotkrytoilovuškoi AT moiseenkove toplivnyicikldlâvyžiganiâminornyhaktinidovvgibridnomreaktorenaosnovestellaratorasovstroennoiotkrytoilovuškoi AT agreno toplivnyicikldlâvyžiganiâminornyhaktinidovvgibridnomreaktorenaosnovestellaratorasovstroennoiotkrytoilovuškoi AT noackk toplivnyicikldlâvyžiganiâminornyhaktinidovvgibridnomreaktorenaosnovestellaratorasovstroennoiotkrytoilovuškoi AT chernitskiysv palivniicikldlâvigorannâmínornihaktinídívugíbridnomureaktorínaosnovístelaratoratavídkritoípastki AT moiseenkove palivniicikldlâvigorannâmínornihaktinídívugíbridnomureaktorínaosnovístelaratoratavídkritoípastki AT agreno palivniicikldlâvigorannâmínornihaktinídívugíbridnomureaktorínaosnovístelaratoratavídkritoípastki AT noackk palivniicikldlâvigorannâmínornihaktinídívugíbridnomureaktorínaosnovístelaratoratavídkritoípastki AT chernitskiysv fuelcycleforminoractinidesburninginastellaratormirrorfusionfissionhybrid AT moiseenkove fuelcycleforminoractinidesburninginastellaratormirrorfusionfissionhybrid AT agreno fuelcycleforminoractinidesburninginastellaratormirrorfusionfissionhybrid AT noackk fuelcycleforminoractinidesburninginastellaratormirrorfusionfissionhybrid |
| first_indexed |
2025-11-24T04:22:26Z |
| last_indexed |
2025-11-24T04:22:26Z |
| _version_ |
1850841443780788224 |
| fulltext |
ISSN 1562-6016. ВАНТ. 2017. №1(107)
36 PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. 2017, № 1. Series: Plasma Physics (23), p. 36-39.
A FUEL CYCLE FOR MINOR ACTINIDES BURNING IN A STELLARATOR-
MIRROR FUSION-FISSION HYBRID
S.V. Chernitskiy
1
, V.E. Moiseenko
2
, O. Ågren
3
, K. Noack
3
1
“Nuclear Fuel Cycle” Science and Technology Establishment, NSC KIPT, Kharkov, Ukraine;
2
Institute of Plasma Physics of the NSC KIPT, Kharkov, Ukraine;
3
Uppsala University, Ångström Laboratory, Uppsala, Sweden
The MCNPX Monte-Carlo code has been used to model a concept of a fusion-fission stellarator-mirror hybrid
aimed for transmutation transuranic content from the spent nuclear fuel. A fuel cycle for the subcritical fusion-
fission hybrid is investigated and discussed.
PACS: 52.55.Hc
INTRODUCTION
Nuclear energy will occupy one of the main
positions in the energy supply of mankind in the coming
decades and in the near future. It is directly related to
the amount of proven uranium reserves in the nature [1].
Besides, economically the electricity generated by
nuclear reactors is one of the cheapest [2]. However,
with using of nuclear energy a number of problems
arises one of which is handling of spent nuclear fuel.
Utilization of spent nuclear fuel is an actual global
problem. The long-term radiotoxicity of the nuclear
waste (Fig. 1) is clearly dominated by actinides [3].
Fig. 1. Time evolution of the potential radiotoxicity
(relative to uranium ore) of the two main components of
nuclear waste for PWR spent fuel
All actinides are fissionable elements and may be
incinerated by fission which is also accompanied by
substantial energy release. Fission produces fission
products which are less radioactive in long term, and
after 200…300 years they could be removed from the
repository. Burning transuranic (TRU) elements could
be made in nuclear reactors, especially in fast because
not all the TRU are fissile by thermal neutrons.
The idea is separation of TRU and then burning
them separately. Nevertheless, this technology has some
problems:
Fast reactors are critical.
Fuel with transuranic elements has a deficit in
delayed neutrons, which decrease the reactor
controllability [4, 5].
Unlike pressurized water reactors (PWR), reduced
value of the Doppler-effect at the fast reactors
leading to deterioration of nuclear safety in the
case of accident situations, such as increase the
temperature of the fuel in the reactor core.
Based on the above, we can conclude that the
transuranic elements can be only small portion of the
fuel, and this hinders their transmutation in significant
amount.
Thus, an attractive idea is development of a
subcritical reactor, the main purpose of which will be a
safe burning of transuranic elements of the spent nuclear
fuel. The subcritical reactors, which are controlled by
external neutron sources, are more complex and costly,
but have certain advantages as compared with critical
reactors. Together with efficient power production the
subcritical reactor has an improved controllability of the
chain fission reactor that boosts reactor safety.
Since for fast neutrons fission cross-section is much
smaller than for thermal neutrons, to provide an
appropriate reactivity of the reactor, the fuel should
contain significant portion of fissionable material.
Therefore, until the radioactive damage destroys the
fuel, the percentage of burned minor actinides cannot be
high. The fuel cycle of transuranic fuel, which is loaded
into the subcritical reactor core, is then of particular
interest.
CONCEPT OF STELLARATOR-MIRROR
HYBRID
In Ref. 6 a stellarator-mirror hybrid reactor (Fig. 2)
is proposed.
Fig. 2. Sketch of the fission-fusion hybrid based on
DRACON [9]
It consists of a magnetic trap for plasma
confinement in which fusion neutrons are generated and
a sub-critical fast reactor driven by these neutrons. The
magnetic trap is of a combined type: it is a toroidal
stellarator with an embedded magnetic mirror with
lower magnetic field.
The stellarator part provides confinement of warm
dense deuterium target plasma. Hot sloshing tritium ions
are confined at the mirror part of the device which is
ISSN 1562-6016. ВАНТ. 2017. №1(107) 37
surrounded by the fission mantle [7]. The calculations
made in that paper indicate that it is possible to achieve
an appropriate criticality for the mantle of compact size.
The toroidal plasma confinement in such a device
depends on whether the magnetic surfaces exist in it.
The study made in Ref. 8 shows that under certain
conditions the nested magnetic surfaces could be
created in a stellarator-mirror machine. The DRACON
magnetic trap [9] can be also used for plasma and hot
tritium ions confinement.
CALCULATION MODEL
The model is cylindrically symmetric and has a
horizontal axis (see Ref. 8). Its radial and axial structure
is shown in Fig. 3. The reactor has an axial opening that
contains vacuum chamber with D-T plasmas which
supplies the fusion neutrons.
Fig. 3. Radial and axial structures of the mirror based
fusion-fission hybrid model
The inner radius of the vacuum chamber is 0.5 m.
For the first wall a thickness of 3 cm was chosen. The
first wall is made of HT-9 steel [10].
The thickness was determined from the results of
critically calculations. The reactor core thickness of
27.8 cm was chosen to make the effective multiplication
factor keff≈0.95. The length of the core is 3 m. It has
axial reflectors on both sides. The radial reflector in the
model is a homogeneous mixture of HT-9 steel and
Li-17Pb-83 (20 % enriched Li-6) with the volume
fractions 70 % and 30 %, respectively. This mixture is
used for tritium breeding: from the reaction
6
Li(n,α)T.
The shield contains a 60:40 vol% mixture of the
stainless steel alloy S30467 type 304B7 [11] with water.
The steel contains 1.75 wt. % of natural boron. To
create a magnetic configuration of the stellarator-mirror
machine superconducting magnets will be used. Heating
the superconducting magnets by neutrons results in
huge energy losses. Therefore, a shield is used to reduce
the neutron and gamma loads of them. The shield
thickness is of 25 cm. All the materials, as well as their
temperatures, which are included in the design were
taken from Ref. 12.
The active zone of the reactor is represented in the
model as a homogenized mixture of fuel,
structure/cladding and coolant. HT-9 and the lead and
bismuth eutectic (LBE) were used as structure/cladding
and coolant materials, respectively.
The actual fuel material is the zirconium alloy
(TRU-10Zr) which consists of the transuranic elements,
as shown at the Table 1, with 10 wt.% of zirconium
[13]. The alloy has a mass density of 18.37 g/cm
3
. A
core volume of 4.3 m
3
contains about 5 tones of
transuranic elements.
The isotopic composition shown in Table 1 is typical
for the composition of the spent nuclear fuel from
PWRs after the removal of uranium and fission
products. The following volume fraction was used for
the homogenized fission blanket: fuel slug material –
0.14, structure/cladding – 0.103, coolant – 0.695. In this
study, a specific fuel form was not considered. The LBE
was assumed to be a mixture of 44.5 wt.% lead and
55.5 wt.% bismuth. The following material has been
used for the axial reflectors: a homogeneous mixture of
HT-9 steel and LBE-coolant with the volume fractions
70 and 30 %, respectively.
Table 1
Isotopic composition of the TRU
Element Composition, wt.%
U-235 0.0039
U-236 0.0018
U-238 0.4234
Np-237 4.313
Pu-239 53.901
Pu-240 21.231
Pu-241 3.870
Pu-242 4.677
Am-241 9.184
Am-242m 0.0067
Am-243 1.021
Cm-243 0.0018
Cm-244 0.1158
Cm-245 0.0125
Cm-246 0.0010
The total length of the main part of the model is 4 m.
Since the fusion neutron generation zone extends
slightly beyond the fission reactor core, as shown in
Fig. 3, and the fission neutrons also leak out here
through the axial opening, there is a need to prevent
leakage of these neutrons. To arrange that, this part of
the plasma column is surrounded by a vessel filled with
borated water [14].
The concentration of boron in the water was taken
10 g/kg. The isotopic content is B10 – 20 % and
B11 – 80 %. The part with borated water has a length of
2.5 m at both sides of the main part and a thickness is of
27 cm.
In the calculation model, a D-T fusion neutron
source was used. In the model, the neutron emission
density was distributed within a number of cylindrical
volumes of radius 10 cm and with a length of 4 m. At
every source point, the fusion neutrons were emitted
with a fixed kinetic energy of 14.1 MeV and isotropic
velocity distribution.
Structure of the reactor is illustrated in Fig. 4.
The relative intensity distribution along the length of
the neutron source used in the MCNPX model is taken
from Ref. 15.
38 ISSN 1562-6016. ВАНТ. 2017. №1(107)
Fig. 4. Scheme of the reactor part of the fusion-
fission hybrid
RESULTS OF CALCULATIONS
The MCNPX code [16] has been used to model the
neutron transport of the stellarator-mirror fusion-fission
reactor.
For the calculation for described above model, the
average fission energy deposited in the core per incident
source neutron is 1140±1 % MeV. This high number
resulted from closeness to unity of the neutron
multiplication factor. With neutron generation intensity
6×10
18
neutrons per second, the fission power is
Pfis≈1100 MW which corresponds to a power
multiplication factor, the ratio of power released to
fusion power, of 65.
Fission is the ultimate nuclear reaction concerning
the incineration of long-lived fissionable fuel isotopes.
Thus, it is of particular interest to know which fission
rate has each fissionable isotope as well as the
possibility of further usage of fuel unloaded from the
hybrid. The MCNPX is calculating a reaction rate
following the formula:
R = N·∫φ(E)σ(E)dE,
where φ(E) is the energy-dependent fluence per one
source neutron (cm
-2
), σ(E) is the energy-dependent
microscopic reaction cross section (barn), N is the
atomic density of material (atoms·cm
-3
).
Table 2
Burnout of the TRU per one fuel cycle
Element
BOC*,
wt.%
Burnup,
wt.%
EOC**,
wt.%
Np-237 4.313 -7.97 3.97
Pu-239 53.901 -10 48.519
Pu-240 21.231 -1.25 20.966
Pu-241 3.870 -2 3.7926
Pu-242 4.677 -2.26 4.57
Am-241 9.184 -8.64 8.39
Am-243 1.021 -7.8 0.94
Cm-244 0.1158 -5.7 0.1092
*BOC – begin of fuel cycle
**EOC – end of fuel cycle
In Ref. 17 burnout rate of transuranics was
calculated. In table 2 is shown burning rate of actinides
per one fuel cycle. Duration of the single-time fuel
usage we determine by Pu-239 burnout which is taken
as 10%. It should be noted, that in the calculation only
those transuranic elements were taken into account,
which together constitute about 99 % of the mass.
U-235, U-236, U-238, Am-242m, Cm-243, Cm-245 and
Cm-246 are neglected, but in the calculations of the fuel
composition they are included (see Table1).
Table 2 shows that burnup is fast for elements such
as Np-237, Pu-239, Am-241, Am-243 and Cm-244.
10 % of plutonium will burn for 125 days. This is an
ideal case, since it was assumed constancy of the
neutron spectrum in time without taking into account
the spectrum distortion with accumulation of fission
products.
Table 3
Amount of the TRU
Element BOC, kg EOC, kg
Np-237 236 217.2
Pu-239 2900 2610
Pu-240 1135 1120.8
Pu-241 208 203.84
Pu-242 249 243.37
Am-241 336 306.97
Am-243 36 33.2
Cm-244 4.2 3.96
The Table 3 displays the amount of transuranic
actinides at the beginning and the end of the first TRU
fuel load into the hybrid. The calculation also showed
that the neutron multiplication factor by the end of the
first TRU fuel load drops to the value of 0.9 and the
fission power release falls to 450 MeV per one source
neutron due to decrease of the TRU amount.
Further calculations show that the fuel is unloaded
from the hybrid reactor after exposure and re-fabrication
(removal of fission products) may be reused.
Table 4
Concentration of the TRU
Element BOC 1, wt.% BOC 2, wt.%
Np-237 4.313 4.277
Pu-239 53.901 52.2778
Pu-240 21.231 22.587
Pu-241 3.870 4.086
Pu-242 4.677 4.924
Am-241 9.184 9.04
Am-243 1.021 1.013
Cm-244 0.1158 0.117
ISSN 1562-6016. ВАНТ. 2017. №1(107) 39
The Table 4 illustrates a comparison of the
concentration of transuranic elements in the first and the
second fuel loads. Neutron multiplication factor for the
second TRU fuel load will be equal 0.9415 which is
only slightly less than the initial keff value, 0.95.
CONCLUSIONS
Since each TRU fuel load into a hybrid reactor,
insufficient amount of transuranic elements is burned.
Therefore, to achieve full TRU burnup, the spent TRU
nuclear fuel after a first load should be used again. In
this case spent TRU nuclear fuel should be placed in a
spent fuel pool for a certain time for initial decrease of
its radioactivity and power release, after which re-
fabrication will be made with removal of the fission
products. Then the new TRU fuel should be
manufactured and downloaded into the core again. In
this instance, while the total mass of the fuel loading
remains the same, but the content of transuranic
elements will be different. Anyway, the reactivity of the
system does not change substantially. It should be
noted, that this scenario of handling the spent nuclear
fuel makes the nuclear fuel cycle closed.
Another option of the fuel cycle which is not
considered here is to make a new fuel by adding minor
actinides from spent nuclear fuel instead of burned.
REFERENCES
1. A.P. Sukhodolov. World’s supply of uranium:
prospects for primary provision of atomic energy
industry // Izvestiya Irkytskoy economicheskoy
academii. 2010, № 4, v. 72 (in Russian).
2. V.V. Glukhov, S.E. Barykin // Economy of the
electric power complex. SPb: “Publishing SPbSPU”,
2003, p. 206.
3. B.S. Ishkhanov. Radioactivity. Moscow: “Publishing
University Book”, 2011.
4. A.G. Sandmayer. Kinetics and stability of fast
neutron reactors. Moscow: “Publishing by atom.
Science and Technology”, 1963.
5. G. Toshinskiy, P. Bulavin // Nuclear Energy. 1967,
v. 23, № 2, p. 146-149.
6. V.E. Moiseenko, K. Noack, O. Ågren // Journal of
Fusion Energy. 2010, v. 29, p. 65-69.
7. S.V. Chernitskiy et al // Annals of Nuclear Energy.
2014, v. 72, p. 413-420.
8. V.G. Kotenko, V.E. Moiseenko, O. Ågren // AIP
Conference Proceedings. 2012, v. 1442, p. 167.
9. V.E. Moiseenko, V.V. Nemov, O. Ågren,
S.V. Kasilov, I.E. Garkusha. Fast ion motion in the
plasma part of a stellarator-mirror fission–fusion hybrid
// Plasma Phys. Control. Fusion. 2016, v. 58,
№ 064005, p 8.
10. ORNL, Fusion Materials. 1999.
http://www.ms.ornl.gov/programs/fusionmtlspdf/june19
99/hashimoto1.pdf.
11. D.V. Fix et al // LLNL report UCRL-PROC-202920.
2004.
12. K. Noack, V.E. Moiseenko, O. Ågren, A. Hagnestal
// Annals of Nuclear Energy. 2011, v. 38, p. 578-589.
13. W.M. Stacey et al // Fusion Science and
Technology. 2002, v. 41, p. 116.
14. M.A. Filand, E.I. Semenova. Properties of rare
elements. Moscow: “Publishing Metallurgy”, 1964.
15. V.E. Moiseenko, O. Ågren // AIP Conference
Proceedings. 2012, v. 1442, p. 199-207.
16. For the U.S. DEPARTMENT OF ENERGY. Monte
Carlo N-Particle Transport Code System for
Multiparticle and High Energy Applications, Version
2.4.0. / Los Alamos National Laboratory, Los Alamos
report LA-CP-02-408, 2002.
17. S.V. Chernitskiy, V.E. Moiseenko, O. Ågren,
K. Noack // PAST. Ser. “Plasma Physics.” 2015, № 1,
v. 95. p. 20-23.
Article received 02.01.2017
ТОПЛИВНЫЙ ЦИКЛ ДЛЯ ВЫЖИГАНИЯ МИНОРНЫХ АКТИНИДОВ В ГИБРИДНОМ
РЕАКТОРЕ НА ОСНОВЕ СТЕЛЛАРАТОРА СО ВСТРОЕННОЙ ОТКРЫТОЙ ЛОВУШКОЙ
С.В. Черницкий, В.Е. Моисеенко, О. Агрен, К. Ноак
С использованием Монте-Карловского кода MCNPX разработана модель гибридного реактора на основе
комбинации стелларатора и открытой ловушки для трансмутации трансурановых изотопов из
отработавшего ядерного топлива. Исследуется и обсуждается топливный цикл для подкритического
гибридного реактора.
ПАЛИВНИЙ ЦИКЛ ДЛЯ ВИГОРАННЯ МІНОРНИХ АКТИНІДІВ У ГІБРИДНОМУ РЕАКТОРІ
НА ОСНОВІ СТЕЛАРАТОРА ТА ВІДКРИТОЇ ПАСТКИ
С.В. Чернiцький, В.Є. Моісеєнко, О. Агрен, К. Ноак
За допомогою Монте-Карлівського коду MCNPX розроблена модель гібридного ректора на основі
комбінації стеларатора та відкритої пастки для трансмутації трансуранових ізотопів з відпрацьованого
ядерного палива. Досліджується та обговорюється паливний цикл для підкритичного гібридного реактора.
http://www.ms.ornl.gov/programs/fusionmtlspdf/june1999/hashimoto1.pdf
http://www.ms.ornl.gov/programs/fusionmtlspdf/june1999/hashimoto1.pdf
|