Reflection of the Ultra-Wideband Signals from Plasma Layers

This paper is concerned with the temporal distortion caused by the dispersion of ultra-wideband signals reflecting from linear and parabolic plasma layers. The magnitudes of the expected effects have been estimated for the various parameters of the plasma layers and sounding ultra-wideband signals....

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2002
Автори: Chernogor, L.F., Lazorenko, O.V.
Формат: Стаття
Мова:English
Опубліковано: Радіоастрономічний інститут НАН України 2002
Назва видання:Радиофизика и радиоастрономия
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/122353
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Reflection of the Ultra-Wideband Signals from Plasma Layers / L.F. Chernogor, O.V. Lazorenko // Радиофизика и радиоастрономия. — 2002. — Т. 7, № 4. — С. 431-434. — Бібліогр.: 4 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-122353
record_format dspace
spelling nasplib_isofts_kiev_ua-123456789-1223532025-02-10T00:37:44Z Reflection of the Ultra-Wideband Signals from Plasma Layers Отражение сверхширокополосных сигналов от плазменных слоев Відбиття надширокосмугових сигналів від плазмових шарів Chernogor, L.F. Lazorenko, O.V. This paper is concerned with the temporal distortion caused by the dispersion of ultra-wideband signals reflecting from linear and parabolic plasma layers. The magnitudes of the expected effects have been estimated for the various parameters of the plasma layers and sounding ultra-wideband signals. The ultra-wideband signal distortions are calculated for reflection from the ionospheric plasma layers and their features are described. Рассмотрены дисперсионные искажения, которые возникают при отражении сверхширокополосных сигналов от линейного и параболического плазменных слоев. Оценены величины наблюдаемых эффектов при различных соотношениях параметров плазменного слоя и зондирующего сверхширокополосного сигнала. Рассчитаны величины и описан характер дисперсионных отражений сверхширокополосных сигналов при отражении от ионосферных плазменных слоев. Розглянуто дисперсійні спотворення, що виникають при відбитті надширокосмугових сигналів від лінійного та параболічного плазмових шарів. Оцінено величини ефектів, що спостерігаються, при різних співвідношеннях параметрів плазмового шару та зондуючого надширокосмугового сигналу. Розраховано величини та описано характер дисперсійних спотворень надширокосмугових сигналів при відбитті від іоносферних плазмових шарів. 2002 Article Reflection of the Ultra-Wideband Signals from Plasma Layers / L.F. Chernogor, O.V. Lazorenko // Радиофизика и радиоастрономия. — 2002. — Т. 7, № 4. — С. 431-434. — Бібліогр.: 4 назв. — англ. 1027-9636 https://nasplib.isofts.kiev.ua/handle/123456789/122353 en Радиофизика и радиоастрономия application/pdf Радіоастрономічний інститут НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description This paper is concerned with the temporal distortion caused by the dispersion of ultra-wideband signals reflecting from linear and parabolic plasma layers. The magnitudes of the expected effects have been estimated for the various parameters of the plasma layers and sounding ultra-wideband signals. The ultra-wideband signal distortions are calculated for reflection from the ionospheric plasma layers and their features are described.
format Article
author Chernogor, L.F.
Lazorenko, O.V.
spellingShingle Chernogor, L.F.
Lazorenko, O.V.
Reflection of the Ultra-Wideband Signals from Plasma Layers
Радиофизика и радиоастрономия
author_facet Chernogor, L.F.
Lazorenko, O.V.
author_sort Chernogor, L.F.
title Reflection of the Ultra-Wideband Signals from Plasma Layers
title_short Reflection of the Ultra-Wideband Signals from Plasma Layers
title_full Reflection of the Ultra-Wideband Signals from Plasma Layers
title_fullStr Reflection of the Ultra-Wideband Signals from Plasma Layers
title_full_unstemmed Reflection of the Ultra-Wideband Signals from Plasma Layers
title_sort reflection of the ultra-wideband signals from plasma layers
publisher Радіоастрономічний інститут НАН України
publishDate 2002
url https://nasplib.isofts.kiev.ua/handle/123456789/122353
citation_txt Reflection of the Ultra-Wideband Signals from Plasma Layers / L.F. Chernogor, O.V. Lazorenko // Радиофизика и радиоастрономия. — 2002. — Т. 7, № 4. — С. 431-434. — Бібліогр.: 4 назв. — англ.
series Радиофизика и радиоастрономия
work_keys_str_mv AT chernogorlf reflectionoftheultrawidebandsignalsfromplasmalayers
AT lazorenkoov reflectionoftheultrawidebandsignalsfromplasmalayers
AT chernogorlf otraženiesverhširokopolosnyhsignalovotplazmennyhsloev
AT lazorenkoov otraženiesverhširokopolosnyhsignalovotplazmennyhsloev
AT chernogorlf vídbittânadširokosmugovihsignalívvídplazmovihšarív
AT lazorenkoov vídbittânadširokosmugovihsignalívvídplazmovihšarív
first_indexed 2025-12-02T05:37:44Z
last_indexed 2025-12-02T05:37:44Z
_version_ 1850373690468859904
fulltext Radio Physics and Radio Astronomy, 2002, v. 7, No. 4, pp. 431-434 REFLECTION OF THE ULTRA-WIDEBAND SIGNALS FROM PLASMA LAYERS L.F. Chernogor, O.V. Lazorenko Kharkiv V. N. Karazin National University 4, Svoboda Square, Kharkov, 61077, Ukraine E-mail: Leonid.F.Chernogor@univer.kharkov.ua This paper is concerned with the temporal distortion caused by the dispersion of ultra-wideband signals re- flecting from linear and parabolic plasma layers. The magnitudes of the expected effects have been estimated for the various parameters of the plasma layers and sounding ultra-wideband signals. The ultra-wideband signal dis- tortions are calculated for reflection from the ionospheric plasma layers and their features are described. 1. Introduction In the 90s of the 20th century, the ultra-wideband (UWB) signals introduced in the 50–60s by Ken- naugh, Moffatt, and Kosgriff began to find increas- ingly wide application to different areas of science and engineering. For example, the UWB signals could be used for remote radio sensing snow and ice covers, the radio- location of subsurface targets, the communication with immersed submarines, for super fast data traffic in computer networks, etc. The application of such signals to radiolocation allows a range resolution of 0.1 m to be attained for a pulse duration of 910τ −≈ s, the detection of tar- gets with a special antiradar cover, e.g., manufac- tured by using the “Stealth” technology, to be ac- complished, and the data on non-coordinate informa- tion on the target (form, size, etc.) to be inferred [1]. The UWB signals were suggested to apply to remote radio sensing near-earth space in the middle of the 90s of the 20th century [2]. The plasma environments, in particular the Earth's ionosphere and magnetosphere, were ex- pected to exert the main negative effect on UWB radio wave propagation due to the dispersion. The features and magnitudes of these distortions due to the phase velocity dispersion, as well as the absorp- tion and attenuation dispersions, are considered in detail in [3] for different models of the UWB signals. The radar equation necessary for calculating the parameters of radio systems was updated for the case of UWB signal applications [4]. 2. Simulation of Reflection The sounding signals are described by six simple analytical UWB signal models in the time-domain, which have been suggested in [3]. The reflected signals in the time domain are represented by the relation ( ) ( )( )( ) exp 4 ( ) 2 2 ( ) r r E t fS f i z f n f i ft i c Q f df ππ π ∞ −∞ = + − ×∫ (1) where ( )S f is the spectral density of the sounding signal given by the complex function ( ) ( ) ( )0 exp 2S f E t i ft dtπ ∞ −∞ = −∫ , f is the frequency, t is time, c is the speed of light in free space, ( )rz f is the altitude of reflection of the harmonic with frequency f , which is determined from the condition ( )( ), 0rn f z f = , ( ),n f z is the index of refraction; ( ) ( ) ( ) ( ) 0 1 , rz f r n f n f z dz z f = ∫ , 1, ( ) 0, pm pm f f Q f f f ≤=  > , (2) and where pmf is the maximum plasma frequency of the medium. The relation (2) expresses the fact that the spectral components with pmf f> are not re- flected from the plasma layer. The index of refraction of the medium is given by ( ) 2 2 21 pfn f f = − . L.F. Chernogor, O.V. Lazorenko 432 Radio Physics and Radio Astronomy, 2002, v. 7, No. 4 The linear and parabolic plasma layers were selected for describing the medium because they are most frequently used for approximating the actual profiles of the Earth's ionospheric electron density. They are given by the following expressions. For the piece-wise linear layer ( ) [ ] [ ] 2 2 2 , 0, , 0, , p p pm m m pm zf f z f z z z f f = = ∈ ∈ where mz is the altitude of the piece-wise linear layer maximum. For the parabolic layer ( ) ( ) ( ) [ ] ( )[ ] 2max2 2 max max min min max max 1 , , , 0, , p p p z zf z f z z z z z z f f z − = −   − ∈ ∈ where minz is the height of the parabolic layer be- ginning, maxz is the height of the peak density. In our case, it is convenient to set min 0z = , and to designate max mz z= , max( )p pmf z f= . It is convenient to introduce the dimensionless variables 0 0 0 0 , , , p p t zT F f Z F f c τ τ τ τ = = = = , which are dimensionless time, frequency, distance, and plasma frequency, respectively, and 0τ is the finite time duration of the UWB signal. The signal reflected from the piece-wise linear layer can be represented as ( ) ( ) ( ) ) ( ) 3 2 8exp 3 2 . 2 r m p m FE T S F i Z F Z i FT i Q F dF π ππ ∞ −∞ = + − ∫ (3) The signal reflected from the parabolic layer is given by ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 exp 2 ln 2 . 2 r p m m p m p m p m E T F Z F S F i FZ FF Z F Z F i FT i Q F dF F Z F π ππ ∞ −∞ =   −  + ×      −  + −   +   ∫ (4) The integrals (3) and (4) are evaluated by nu- merical methods. To model the actual ionospheric plasma layer, we set ( ) 10p mf z = MHz for the daytime iono- sphere and ( ) 10p mf z = MHz for the nighttime ionosphere, and 200mz = km in both cases. 3. Results of Model Calculations In reflecting the UWB signal from a linear or para- bolic plasma layer with a given maximum plasma frequency ( )pm p mF F Z≡ , two different situations are possible. In the first of them, the condition max pmF F≤ is satisfied ( maxF is the maximum frequency of the UWB signal spectral density), i.e., all spectral com- ponents of the probing signal are reflected and re- turned back. Then, if all of them are reflected at the same range from the source, i.е. from the boundary of the plasma layer ( min maxZ Z= ), the signal changes insignificantly due to the phase changes of the complex spectrum of the signal by /2π in the process of reflection. Such a situation is shown in Fig. 1 for 80pmF = . It can be seen that a bi-lobe signal pattern ( 2µ → ) has transformed into a tri- lobe one ( 1,33µ ≈ ). However, the reflected signal remains ultra-wideband. In the second situation, max pmF F> , part of the UWB signal spectrum is not reflected from the plasma layer, and does not return. As a result, the more there are such components, the narrower the signal spectrum becomes, and therefore, the more reflected signal lobes occurs, the smaller the wide- band index µ becomes, and the faster the reflected signal ceases to be a UWB signal. In Fig. 1, this process can be seen as pmF decreases. Therefore, in practical applications of UWB signals to remotely sounding the ionosphere, the sig- nals with max pmF F≤ should be selected. It is beneficial both from the point of view of decreasing the distortion in reflected signals, and from the point of view of energy conservation, since for max pmF F> part of signal energy is wasted. Consider separately the effect of dispersion dis- tortion of the sounding signal arising exclusively because of the fact that the different signal spectral components are reflected at different ranges from the source of the signal, i.e., the condition max pmF F≤ satisfied. In Fig. 2, the dispersion distortions in the UWB sounding signals are shown when it is reflected from the model parabolic plasma layer. It is established that the greater spectral component frequency is, the greater path it travels up to the level of reflection and back. Provided pmF is a constant, this results in an increase in the dispersion distortion of the reflected signal as mZ increases; in dimensional variables, this corresponds to an increase in mz if ( )p mf z and 0τ remain constant. The distortion is displayed in the ap- Reflection of the Ultra-Wideband Signals from Plasma Layers Radio Physics and Radio Astronomy, 2002, v. 7, No. 4 433 pearance of new lobes in the UWB signal, which re- duces its wideband index; therefore, the signal gradu- ally ceases to be ultra-wideband. The temporal dura- tion of the signal also increases with increasing mZ . As distinct from the dispersion distortions of UWB signals arising during their propagation in the dispersive plasma environments, in particular, in the Earth's ionosphere [3], when, as the signal disperses, the high frequency components propagate to the ris- ing edge of the signal and the low frequency to the falling edge of the signal, at reflection the opposite picture is observed. Here the lower frequency com- ponents appear closer to the signal rising edge and those with the higher frequency to the falling edge. We shall now consider the reflection of UWB signals from a real ionospheric layer, for which the parabolic plasma layer model is used with the men- tioned above parameters. It is convenient to introduce the parameter r that is equal to the ratio of the maximum frequency, maxf , in the UWB sounding signal spectral density to the plasma frequency at parabolic layer peak ( ) max max p m pm f Fr f z F = = . The dispersive distortions depend on the value of this parameter: the greater this parameter r is, the greater distortions are. The range 0 1r< ≤ corresponds to the reflec- tion of all spectral components from the plasma Fig. 1. Probing signal in the time-domain ( ( )0E T ) and in the frequency domain ( ( )0S F ), and the re- flected signal in the time domain ( ( )rE T ) and in the frequency domain ( ( )rS F ) for different values of the peak plasma frequency pmF Fig. 2. Dispersive distortion of the probing UWB signals (model 5) reflecting from the parabolic plasma layer with various layer peak heights mZ . The layer peak plasma frequency max 50pmF F= = L.F. Chernogor, O.V. Lazorenko 434 Radio Physics and Radio Astronomy, 2002, v. 7, No. 4 layer, and for 1r > , part of them does not reflect, and consequently, does not return to the source of the sounding signal. The number of such components grows with increasing r . As a quantitative property of the distortion, we shall use the relative signal lengthening 0/τ τ where τ is the echo time duration. It is established that the dispersive distortion of the sounding UWB signals used for remotely radio sensing the Earth's iono- sphere is essential. When the UWB signal with 4 0 5 10τ −= ⋅ s is reflected from the ionospheric plasma layer with 200mz = km and 10pmf = MHz, which corre- sponds to the daytime ionosphere, 0/ 1 1000τ τ ÷∼ when 0.01 0.60r = ÷ . The features of the distortion is shown in Fig. 3. Use of the same UWB sounding signals in the nighttime ionosphere, 10pmf = MHz, results in 0/ 1 225τ τ ÷∼ when 0.05 0.60r = ÷ . Similar results are also obtained with other ionospheric mod- els. Therefore, the effects are virtually independent of UWB signal model. 4. Conclusions 1. As the UWB signals are reflected from the iono- spheric plasma layers, significant dispersive dis- tortion arises. 2. The features of this distortion differ from those occurring during UWB signal propagation in the Earth's ionosphere and magnetosphere. References 1. L.Y. Astanin, A.A. Kostylev. Fundamentals of Ultra- Wideband Radar Measurements, Radio and Commu- nication, Moscow (1989) (in Russian). 2. O.V. Lazorenko, L.F. Chernogor. In Proc. of 4th Cri- mean Conference and Exhibition “Microwave Tech- nology and Satellite Reception”. Sevastopol: Weber. pp. 123-124. (1994) (in Russian). 3. O.V. Lazorenko, L.F. Chernogor. Geomagnetism and Aeronomy, Vol. 37, No. 6, pp. 80–90, (1997) (in Rus- sian). 4. O.V. Lazorenko, L.F. Chernogor. Radiotekhnika. All- Ukr. Sci. Interdep. Mag.. No. 103. pp. 31–34. (1997) (in Russian). ОТРАЖЕНИЕ СВЕРХШИРОКОПОЛОСНЫХ СИГНАЛОВ ОТ ПЛАЗМЕННЫХ СЛОЕВ Л.Ф. Черногор, О.В. Лазоренко Рассмотрены дисперсионные искажения, которые возникают при отражении сверхширокополосных сиг- налов от линейного и параболического плазменных слоев. Оценены величины наблюдаемых эффектов при различных соотношениях параметров плазменного слоя и зондирующего сверхширокополосного сигнала. Рассчитаны величины и описан характер дисперсион- ных отражений сверхширокополосных сигналов при отражении от ионосферных плазменных слоев. ВІДБИТТЯ НАДШИРОКОСМУГОВИХ СИГНАЛІВ ВІД ПЛАЗМОВИХ ШАРІВ Л.Ф. Чорногор, О.В. Лазоренко Розглянуто дисперсійні спотворення, що виника- ють при відбитті надширокосмугових сигналів від лі- нійного та параболічного плазмових шарів. Оцінено величини ефектів, що спостерігаються, при різних співвідношеннях параметрів плазмового шару та зон- дуючого надширокосмугового сигналу. Розраховано величини та описано характер дисперсійних спотво- рень надширокосмугових сигналів при відбитті від іоносферних плазмових шарів. Fig. 3. Dispersive distortion of the sounding UWB signals reflecting from the parabolic ionospheric layer with various values of r and for 4 0 5 10τ −= ⋅ s, 10pmf = MHz, 200mz = km