Modification of the Gelfand-Levitan Method for 1-D Multylaered Structure Inverse Problem

For dielectric slab with step profile of dielectric constant the Gelfand-Levitan method is correct if peaks of time-domain reflected signal are close to δ-pulses. Combination of parametric spectral methods for obtaining time-domain signal from frequency domain data and Gelfand-Levitan method for tim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Радиофизика и радиоастрономия
Datum:2002
Hauptverfasser: Drobakhin, O.O., Andreev, M.V., Novomlinov, A., Korotkaya, V., Sazonov, A.Z.
Format: Artikel
Sprache:English
Veröffentlicht: Радіоастрономічний інститут НАН України 2002
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/122360
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Modification of the Gelfand-Levitan Method for 1-D Multylaered Structure Inverse Problem / O.O. Drobakhin, M.V. Andreev, A. Novomlinov, V. Korotkaya, A.Z. Sazonov // Радиофизика и радиоастрономия. — 2002. — Т. 7, № 4. — С. 459-461. — Бібліогр.: 4 назв. — англ.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-122360
record_format dspace
spelling Drobakhin, O.O.
Andreev, M.V.
Novomlinov, A.
Korotkaya, V.
Sazonov, A.Z.
2017-07-02T16:53:37Z
2017-07-02T16:53:37Z
2002
Modification of the Gelfand-Levitan Method for 1-D Multylaered Structure Inverse Problem / O.O. Drobakhin, M.V. Andreev, A. Novomlinov, V. Korotkaya, A.Z. Sazonov // Радиофизика и радиоастрономия. — 2002. — Т. 7, № 4. — С. 459-461. — Бібліогр.: 4 назв. — англ.
1027-9636
https://nasplib.isofts.kiev.ua/handle/123456789/122360
For dielectric slab with step profile of dielectric constant the Gelfand-Levitan method is correct if peaks of time-domain reflected signal are close to δ-pulses. Combination of parametric spectral methods for obtaining time-domain signal from frequency domain data and Gelfand-Levitan method for time-domain signal processing can help to improve the solution of the problem. Results of numerical simulation are presented.
Для диэлектрической плиты со ступенчатым профилем диэлектрической постоянной применим метод Гельфанда-Левитана, если пики отраженного сигнала близки к δ -импульсам. Комбинация параметрических спектральных методов для получения сигнала во временной области по данным из частотной области и метод Гельфанда-Левитана для обработки сигнала во временной области позволяют получить усовершенствованный алгоритм решения задачи. Приведены результаты численного моделирования.
Для діелектричної плити зі східчастим профілем діелектричної сталої метод Гельфанда-Левітана застосовний, якщо піки відбитого сигналу близькі до δ - імпульсів. Комбінація параметричних спектральних методів для отримання сигналу в часовій області та метод Гельфанда-Левітана для обробки сигналу в часовій області дозволяють отримати удосконалений алгоритм розв’язання задачі. Наведено результати чисельного моделювання.
en
Радіоастрономічний інститут НАН України
Радиофизика и радиоастрономия
Modification of the Gelfand-Levitan Method for 1-D Multylaered Structure Inverse Problem
Модификация метода Гельфанда-Левитана для обратной задачи одномерной многослойной структуры
Модифікація методу Гельфанда-Левітана для зворотної задачі одновимірної багатошарової структури
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Modification of the Gelfand-Levitan Method for 1-D Multylaered Structure Inverse Problem
spellingShingle Modification of the Gelfand-Levitan Method for 1-D Multylaered Structure Inverse Problem
Drobakhin, O.O.
Andreev, M.V.
Novomlinov, A.
Korotkaya, V.
Sazonov, A.Z.
title_short Modification of the Gelfand-Levitan Method for 1-D Multylaered Structure Inverse Problem
title_full Modification of the Gelfand-Levitan Method for 1-D Multylaered Structure Inverse Problem
title_fullStr Modification of the Gelfand-Levitan Method for 1-D Multylaered Structure Inverse Problem
title_full_unstemmed Modification of the Gelfand-Levitan Method for 1-D Multylaered Structure Inverse Problem
title_sort modification of the gelfand-levitan method for 1-d multylaered structure inverse problem
author Drobakhin, O.O.
Andreev, M.V.
Novomlinov, A.
Korotkaya, V.
Sazonov, A.Z.
author_facet Drobakhin, O.O.
Andreev, M.V.
Novomlinov, A.
Korotkaya, V.
Sazonov, A.Z.
publishDate 2002
language English
container_title Радиофизика и радиоастрономия
publisher Радіоастрономічний інститут НАН України
format Article
title_alt Модификация метода Гельфанда-Левитана для обратной задачи одномерной многослойной структуры
Модифікація методу Гельфанда-Левітана для зворотної задачі одновимірної багатошарової структури
description For dielectric slab with step profile of dielectric constant the Gelfand-Levitan method is correct if peaks of time-domain reflected signal are close to δ-pulses. Combination of parametric spectral methods for obtaining time-domain signal from frequency domain data and Gelfand-Levitan method for time-domain signal processing can help to improve the solution of the problem. Results of numerical simulation are presented. Для диэлектрической плиты со ступенчатым профилем диэлектрической постоянной применим метод Гельфанда-Левитана, если пики отраженного сигнала близки к δ -импульсам. Комбинация параметрических спектральных методов для получения сигнала во временной области по данным из частотной области и метод Гельфанда-Левитана для обработки сигнала во временной области позволяют получить усовершенствованный алгоритм решения задачи. Приведены результаты численного моделирования. Для діелектричної плити зі східчастим профілем діелектричної сталої метод Гельфанда-Левітана застосовний, якщо піки відбитого сигналу близькі до δ - імпульсів. Комбінація параметричних спектральних методів для отримання сигналу в часовій області та метод Гельфанда-Левітана для обробки сигналу в часовій області дозволяють отримати удосконалений алгоритм розв’язання задачі. Наведено результати чисельного моделювання.
issn 1027-9636
url https://nasplib.isofts.kiev.ua/handle/123456789/122360
citation_txt Modification of the Gelfand-Levitan Method for 1-D Multylaered Structure Inverse Problem / O.O. Drobakhin, M.V. Andreev, A. Novomlinov, V. Korotkaya, A.Z. Sazonov // Радиофизика и радиоастрономия. — 2002. — Т. 7, № 4. — С. 459-461. — Бібліогр.: 4 назв. — англ.
work_keys_str_mv AT drobakhinoo modificationofthegelfandlevitanmethodfor1dmultylaeredstructureinverseproblem
AT andreevmv modificationofthegelfandlevitanmethodfor1dmultylaeredstructureinverseproblem
AT novomlinova modificationofthegelfandlevitanmethodfor1dmultylaeredstructureinverseproblem
AT korotkayav modificationofthegelfandlevitanmethodfor1dmultylaeredstructureinverseproblem
AT sazonovaz modificationofthegelfandlevitanmethodfor1dmultylaeredstructureinverseproblem
AT drobakhinoo modifikaciâmetodagelʹfandalevitanadlâobratnoizadačiodnomernoimnogosloinoistruktury
AT andreevmv modifikaciâmetodagelʹfandalevitanadlâobratnoizadačiodnomernoimnogosloinoistruktury
AT novomlinova modifikaciâmetodagelʹfandalevitanadlâobratnoizadačiodnomernoimnogosloinoistruktury
AT korotkayav modifikaciâmetodagelʹfandalevitanadlâobratnoizadačiodnomernoimnogosloinoistruktury
AT sazonovaz modifikaciâmetodagelʹfandalevitanadlâobratnoizadačiodnomernoimnogosloinoistruktury
AT drobakhinoo modifíkacíâmetodugelʹfandalevítanadlâzvorotnoízadačíodnovimírnoíbagatošarovoístrukturi
AT andreevmv modifíkacíâmetodugelʹfandalevítanadlâzvorotnoízadačíodnovimírnoíbagatošarovoístrukturi
AT novomlinova modifíkacíâmetodugelʹfandalevítanadlâzvorotnoízadačíodnovimírnoíbagatošarovoístrukturi
AT korotkayav modifíkacíâmetodugelʹfandalevítanadlâzvorotnoízadačíodnovimírnoíbagatošarovoístrukturi
AT sazonovaz modifíkacíâmetodugelʹfandalevítanadlâzvorotnoízadačíodnovimírnoíbagatošarovoístrukturi
first_indexed 2025-11-26T03:02:29Z
last_indexed 2025-11-26T03:02:29Z
_version_ 1850609694558650368
fulltext Radio Physics and Radio Astronomy, 2002, v. 7, No. 4, pp. 459-461 MODIFICATION OF THE GELFAND-LEVITAN METHOD FOR 1-D MULTYLAERED STRUCTURE INVERSE PROBLEM O. Drobakhin, M. Andreev, A. Novomlinov, V. Korotkaya, A. Sazonov Radiophysics Dept., Dniepropetrovsk State University, 13 Nauchny str., 49050, Dniepropetrovsk, Ukraine For dielectric slab with step profile of dielectric constant the Gelfand-Levitan method is correct if peaks of time-domain reflected signal are close to δ-pulses. Combination of parametric spectral methods for obtaining time-domain signal from frequency domain data and Gelfand-Levitan method for time-domain signal processing can help to improve the solution of the problem. Results of numerical simulation are presented. 1. Introduction 1-D inverse problem for multylayered dielectric structures is a fundamental problem of physics. The profile of dielectric constant as function of distance has to be reconstructed. A well-known approach to the solution of the problem is the Gelfand-Levitan method [1]. The main advantage of this approach is capability of discrete (step) profile recovering with taking into account multiple reflections. 2. Basic Relations The Gelfand-Levitan method can be applied to dis- crete multylayered dielectric structures with step pro- file of dielectric permittivity. It can be used success- fully if reflectogramma of structure is obtained even for situation with multiple reflections in every layer but only for ultrashort time pulses. Let us consider a multylayered dielectric structure which consists of n layers with 1 2, nε ε ε… and thick- nesses 1 2, nd d d… ; 0ε is dielectric constant of air. The essence of the Gelfand-Levitan method consists in serial exception of the upper most layer influence in relation to direction of the falling wave. For this purpose the linear equation system is made reflected wave data iR with unknown function ( ),2K k j k− for system consisting of the k top layers. 0 0 1 0 1 1 0 01 0 0 0 1 0 0 0 0 1 ( , 2 ) ( , 4 ) ( , ) k R R R R R R K k k K k k K k k −                  +                         −     −          …… … … i … … 0 1 1 . k R R R − −    −   =       −     (1) After solving this system of equations, we will find value of ( ),K k k and then after substitution of this value to the formula ( ) ( )[ ] 2 2 1 0 1 1 1 , 1 k k i i r r K k k − − =    = − + −     ∏ , (2) we will find the reflectivity factor of the ( )1k − layer. The restoration of dielectric permeability is de- scribed by the formula: ( ) ( )( )21 1 11 1i i i ir rε ε − − += − + . (3) The Gelfand-Levitan method has a disadvantage for situation of peaks with non-similar to δ -peak Fig. 1. Time-domain reflection coefficient for two- layered structure calculated using discrete Fourier transform ( 1 0.499f = GHz, 50N = , 1 1d = , 2 2d = cm) O. Drobakhin, M. Andreev, A. Novomlinov, V. Korotkaya, A. Sazonov 460 Radio Physics and Radio Astronomy, 2002, v. 7, No. 4 form. The accuracy of the profile reconstruction is being degraded. For finite frequency band signals there are ripples in reconstructed profile of dielectric constant. This situation is rather usual for microwave measurements. Parametric spectral methods such as the Prony method, the generalized pencil of matrix method [2] and the maximum of likelihood method [3] can be applied instead of discrete Fourier transform for ob- taining time-domain signal. There is a simple ap- proach [4] for data interpretation but the approach is correct in case of negligibly low level of reverbera- tions. Applications of parametric spectral analysis methods allows one to avoid disadvantages of tradi- tional application of the Gelfand-Levitan method to time-domain signal obtained by discrete Fourier transform. 3. Numerical Simulation For numerical simulation of the Gelfand-Levitan method using different methods of parametric spec- tral analysis the time-domain reflection coefficient has been synthesized on the base of frequency- domain data calculated under suggestion of planar- wave approximation. The parameters of two-layered structure were 1 9ε = and 2 5ε = . The thicknesses were 1 1d = cm and 2 2d = cm. The values of step in frequency domain were chosen equal to 1 0.499f∆ = GHz, 2 0.15f∆ = GHz. The number of frequencies N was 50. Thus the frequency band were 24.45 and 7.35 GHz correspondingly. For data presented in fig. 2, 3, 5, 6 one sample of x-axis corresponds to geometrical sample equal to 1 2 iN fπ ∆ with additional multiplier 1 iε . The value iε was chosen equal to value in this point. Time discrete for data in Fig. 1 were chosen in the manner provided time-domain peak form closely similar to form of δ -pulses. Fig. 2 confirms Gelfand-Levitan method capa- bility of correct reconstruction of dielectric constant profile for case of sin /x x peaks which are closely similar to δ -pulses. Non-sufficient ripples in the reconstructed profile are occurred due to side-lobes of functions of sin /x x . Results of dielectric con- stant profile reconstruction by the Gelfand-Levitan method for time-domain signals obtained by general- ized pencil of matrix method is presented in Fig. 3. The Prony method and the maximum of likeli- hood method give similar. It is clear that application of the three methods of parametric spectral analysis allows one to reconstruct profile more correctly. The parasitic ripples have been vanished. For some parts of the profile the first approach provides more accu- rate results but this situation occurred only for spe- cific situation of δ -form of pulses. In practical situa- tion δ -form of pulses can be occurred seldom. Results for case 2 0.15f∆ = GHz are presented in Fig. 4-6. After discrete Fourier transform obtained peaks in time domain have form non-similar to δ - pulses. Recovering the profile by direct application of the Gelfand-Levitan method implies the appear- ance of ripples with large amplitudes comparable with values of the dielectric constant. These oscilla- Fig. 2. Profile of dielectric constant recovered by Gelfand-Levitan method for signal of Fig. 1 Fig. 3. Profile of dielectric constant recovered by Gelfand-Levitan method for data received by gener- alized pencil of matrix method Fig. 4. Time-domain reflection coefficient for two- layered structure calculated using discrete Fourier transform ( 1 0.15f = GHz, 50N = , 1 1d = , 2 2d = cm) Modification of the Gelfand-Levitan Method for 1-D Multylaered Structure Inverse Problem Radio Physics and Radio Astronomy, 2002, v. 7, No. 4 461 tions managed to be avoided by use of the spectral parametrical analysis methods. Results of profile reconstruction by the Gelfand- Levitan method for time-domain data obtained from the same data of Fig. 4 using parametric spectral methods are presented in Fig. 6. Restored dielectric permeability structure due to use of this methods becomes more smooth and oscillations disappear. Worse result was obtained for case of the Prony’s method but even for this situation the ripples were disappeared. The best results were obtained for maximum likelihood method and generalized pencil of matrix method. The approaches provide rather high accuracy of estimation. 4. Conclusions The results of numerical experiments allow to make conclusions that the Gelfand-Levitan method is the most simple in realization if time characteristic of the wave reflected from the layered structure are ob- tained by discrete Fourier transform from data ob- tained experimentally or numerically in frequency domain. This way is more economic concerning computing expenses but it works adequately when the width of frequency band is chosen in the manner that peaks have δ -pulse form and non-overlapped. In practice it is difficult enough for realizing if layers have different electric thicknesses. The spectral pa- rametrical analysis methods used allow one to solve the problem. References 1. K. Aki, P.G. Richards. Quantitative seismology. The- ory and methods. W.H. Freeman and Company, 1980. 2. Y. Hua, T.K. Sarkar. Generalized Pencil-of-Function Method for Extracting Poles of an EM System from Its Transient Response. IEEE Trans. Antennas and Propag, AP-37, No. 2, pp. 229-233, Feb. 1989. 3. H. Vanhamme. High resolution frequency-domain reflectometry. IEEE Trans. Instrumentation and Measurement, 39, No. 2, pp. 369-375, Apr.1990. 4. M.V. Andreev, V.F. Borulko, O.O. Drobakhin. One- dimensional Inverse Problem Solution for Multilay- ered Dielectric Structures Using Least-Square Spectral Estimation Method. Proc. of the 1995 URSI Int. Symp. on Electromagnetic Theory, St.Petersburg, Russia, May 23-26, 1995, pp. 148-151. МОДИФИКАЦИЯ МЕТОДА ГЕЛЬФАНДА-ЛЕВИТАНА ДЛЯ ОБРАТНОЙ ЗАДАЧИ ОДНОМЕРНОЙ МНОГОСЛОЙНОЙ СТРУКТУРЫ О. Дробахин, М. Авдеев, А. Новомлинов, В. Короткая, А. Сазонов Для диэлектрической плиты со ступенчатым про- филем диэлектрической постоянной применим метод Гельфанда-Левитана, если пики отраженного сигнала близки к δ -импульсам. Комбинация параметрических спектральных методов для получения сигнала во вре- менной области по данным из частотной области и метод Гельфанда-Левитана для обработки сигнала во временной области позволяют получить усовершенст- вованный алгоритм решения задачи. Приведены ре- зультаты численного моделирования. МОДИФІКАЦІЯ МЕТОДУ ГЕЛЬФАНДА- ЛЕВІТАНА ДЛЯ ЗВОРОТНОЇ ЗАДАЧІ ОДНОВИМІРНОЇ БАГАТОШАРОВОЇ СТРУКТУРИ О. Дробахін, М. Авдєєв, О. Новомлінов, В. Короткая, А. Сазонов Для діелектричної плити зі східчастим профілем діелектричної сталої метод Гельфанда-Левітана засто- совний, якщо піки відбитого сигналу близькі до δ - імпульсів. Комбінація параметричних спектральних методів для отримання сигналу в часовій області та метод Гельфанда-Левітана для обробки сигналу в часо- вій області дозволяють отримати удосконалений алго- ритм розв’язання задачі. Наведено результати чисель- ного моделювання. Fig. 5. Profile of dielectric constant recovered by the Gelfand-Levitan method for signal of Fig. 4 Fig. 6. Profile of dielectric constant recovered by Gelfand-Levitan method for data received by gener- alized pencil of matrix method