Вложение инвариантных многообразий в семейство интегральных многообразий и анализ решения Гесса

Рассмотрена задача овключении инвариантногомногообразия динамической системы всемействоинтегральных многообразий. Показано, чтотакоевключение всегда возможно, если толькоинвариантноемногообразие не является особым (состоящим из особых точек системы) коразмерности единица. Это дает возможность изучат...

Full description

Saved in:
Bibliographic Details
Published in:Механика твердого тела
Date:2002
Main Author: Ковалев, А.М.
Format: Article
Language:Russian
Published: Інститут прикладної математики і механіки НАН України 2002
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/123685
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Вложение инвариантных многообразий в семейство интегральных многообразий и анализ решения Гесса / А.М. Ковалев // Механика твердого тела: Межвед. сб. науч. тр. — 2002. — Вип. 32. — С. 16-31. — Бібліогр.: 13 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:Рассмотрена задача овключении инвариантногомногообразия динамической системы всемействоинтегральных многообразий. Показано, чтотакоевключение всегда возможно, если толькоинвариантноемногообразие не является особым (состоящим из особых точек системы) коразмерности единица. Это дает возможность изучать иинвариантные многообразия, используя уравнение для интегралов, а не уравнения Леви-Чивита, содержащие неопределенные множители. Установлена определяющая роль особых многообразий в формировании фазового портрета динамической системы и получены следующие из этого свойства интегралов. Результаты применены к анализу решений уравнений Эйлера-Пуассона. Дана характеристика четвертых интегралов вслучаях Эйлера, Лагранжа иКовалевской. Доказано, чтопри условиях Гессасуществует четвертый интеграл, частным случаем которогоявляются интегралы Эйлера иЛагранжа, атакжерешения Гесса и Докшевича.
ISSN:0321-1975