Spectrol properties of symplectic integrators for problem on motion of a free rigid body
In this paper a new approach useful for numerical integration of the motion equations for a free rigid body with a fixed point is studied. The approach employs symplectic integration schemes of the second and third order. These schemes are presented as a sequence of rotations with two frequencies pe...
Gespeichert in:
| Veröffentlicht in: | Механика твердого тела |
|---|---|
| Datum: | 2003 |
| 1. Verfasser: | |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Інститут прикладної математики і механіки НАН України
2003
|
| Online Zugang: | https://nasplib.isofts.kiev.ua/handle/123456789/123732 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Zitieren: | Spectrol properties of symplectic integrators for problem on motion of a free rigid body / N.V. Khlistunova // Механика твердого тела: Межвед. сб. науч. тр. — 2002. — Вип. 32. — С. 190-199. — Бібліогр.: 9 назв. — рос. |
Institution
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-123732 |
|---|---|
| record_format |
dspace |
| spelling |
Khlistunova, N.V. 2017-09-09T06:19:43Z 2017-09-09T06:19:43Z 2003 Spectrol properties of symplectic integrators for problem on motion of a free rigid body / N.V. Khlistunova // Механика твердого тела: Межвед. сб. науч. тр. — 2002. — Вип. 32. — С. 190-199. — Бібліогр.: 9 назв. — рос. 0321-1975 https://nasplib.isofts.kiev.ua/handle/123456789/123732 531.38 In this paper a new approach useful for numerical integration of the motion equations for a free rigid body with a fixed point is studied. The approach employs symplectic integration schemes of the second and third order. These schemes are presented as a sequence of rotations with two frequencies per each integration step. Roth schemes are implemented and tested against Runge-Kutta-Fehlberg fifth order method, the represented computational results are satisfactory. en Інститут прикладної математики і механіки НАН України Механика твердого тела Spectrol properties of symplectic integrators for problem on motion of a free rigid body Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Spectrol properties of symplectic integrators for problem on motion of a free rigid body |
| spellingShingle |
Spectrol properties of symplectic integrators for problem on motion of a free rigid body Khlistunova, N.V. |
| title_short |
Spectrol properties of symplectic integrators for problem on motion of a free rigid body |
| title_full |
Spectrol properties of symplectic integrators for problem on motion of a free rigid body |
| title_fullStr |
Spectrol properties of symplectic integrators for problem on motion of a free rigid body |
| title_full_unstemmed |
Spectrol properties of symplectic integrators for problem on motion of a free rigid body |
| title_sort |
spectrol properties of symplectic integrators for problem on motion of a free rigid body |
| author |
Khlistunova, N.V. |
| author_facet |
Khlistunova, N.V. |
| publishDate |
2003 |
| language |
English |
| container_title |
Механика твердого тела |
| publisher |
Інститут прикладної математики і механіки НАН України |
| format |
Article |
| description |
In this paper a new approach useful for numerical integration of the motion equations for a free rigid body with a fixed point is studied. The approach employs symplectic integration schemes of the second and third order. These schemes are presented as a sequence of rotations with two frequencies per each integration step. Roth schemes are implemented and tested against Runge-Kutta-Fehlberg fifth order method, the represented computational results are satisfactory.
|
| issn |
0321-1975 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/123732 |
| citation_txt |
Spectrol properties of symplectic integrators for problem on motion of a free rigid body / N.V. Khlistunova // Механика твердого тела: Межвед. сб. науч. тр. — 2002. — Вип. 32. — С. 190-199. — Бібліогр.: 9 назв. — рос. |
| work_keys_str_mv |
AT khlistunovanv spectrolpropertiesofsymplecticintegratorsforproblemonmotionofafreerigidbody |
| first_indexed |
2025-12-07T20:54:06Z |
| last_indexed |
2025-12-07T20:54:06Z |
| _version_ |
1850884327817084928 |