Spectrol properties of symplectic integrators for problem on motion of a free rigid body

In this paper a new approach useful for numerical integration of the motion equations for a free rigid body with a fixed point is studied. The approach employs symplectic integration schemes of the second and third order. These schemes are presented as a sequence of rotations with two frequencies pe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Механика твердого тела
Datum:2003
1. Verfasser: Khlistunova, N.V.
Format: Artikel
Sprache:English
Veröffentlicht: Інститут прикладної математики і механіки НАН України 2003
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/123732
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Spectrol properties of symplectic integrators for problem on motion of a free rigid body / N.V. Khlistunova // Механика твердого тела: Межвед. сб. науч. тр. — 2002. — Вип. 32. — С. 190-199. — Бібліогр.: 9 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-123732
record_format dspace
spelling Khlistunova, N.V.
2017-09-09T06:19:43Z
2017-09-09T06:19:43Z
2003
Spectrol properties of symplectic integrators for problem on motion of a free rigid body / N.V. Khlistunova // Механика твердого тела: Межвед. сб. науч. тр. — 2002. — Вип. 32. — С. 190-199. — Бібліогр.: 9 назв. — рос.
0321-1975
https://nasplib.isofts.kiev.ua/handle/123456789/123732
531.38
In this paper a new approach useful for numerical integration of the motion equations for a free rigid body with a fixed point is studied. The approach employs symplectic integration schemes of the second and third order. These schemes are presented as a sequence of rotations with two frequencies per each integration step. Roth schemes are implemented and tested against Runge-Kutta-Fehlberg fifth order method, the represented computational results are satisfactory.
en
Інститут прикладної математики і механіки НАН України
Механика твердого тела
Spectrol properties of symplectic integrators for problem on motion of a free rigid body
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Spectrol properties of symplectic integrators for problem on motion of a free rigid body
spellingShingle Spectrol properties of symplectic integrators for problem on motion of a free rigid body
Khlistunova, N.V.
title_short Spectrol properties of symplectic integrators for problem on motion of a free rigid body
title_full Spectrol properties of symplectic integrators for problem on motion of a free rigid body
title_fullStr Spectrol properties of symplectic integrators for problem on motion of a free rigid body
title_full_unstemmed Spectrol properties of symplectic integrators for problem on motion of a free rigid body
title_sort spectrol properties of symplectic integrators for problem on motion of a free rigid body
author Khlistunova, N.V.
author_facet Khlistunova, N.V.
publishDate 2003
language English
container_title Механика твердого тела
publisher Інститут прикладної математики і механіки НАН України
format Article
description In this paper a new approach useful for numerical integration of the motion equations for a free rigid body with a fixed point is studied. The approach employs symplectic integration schemes of the second and third order. These schemes are presented as a sequence of rotations with two frequencies per each integration step. Roth schemes are implemented and tested against Runge-Kutta-Fehlberg fifth order method, the represented computational results are satisfactory.
issn 0321-1975
url https://nasplib.isofts.kiev.ua/handle/123456789/123732
citation_txt Spectrol properties of symplectic integrators for problem on motion of a free rigid body / N.V. Khlistunova // Механика твердого тела: Межвед. сб. науч. тр. — 2002. — Вип. 32. — С. 190-199. — Бібліогр.: 9 назв. — рос.
work_keys_str_mv AT khlistunovanv spectrolpropertiesofsymplecticintegratorsforproblemonmotionofafreerigidbody
first_indexed 2025-12-07T20:54:06Z
last_indexed 2025-12-07T20:54:06Z
_version_ 1850884327817084928