Programmed motion of mechanical systems

The main results of this contribution are new methods of solving of adjoint systems of 6n di erential nonlinear equations and its application in classical and celestial mechanics. At first, we are observing a general dynamic system of n differential equations of the first order, which contain n inde...

Повний опис

Збережено в:
Бібліографічні деталі
Опубліковано в: :Механика твердого тела
Дата:2004
Автор: Vujičić, Veljko A.
Формат: Стаття
Мова:English
Опубліковано: Інститут прикладної математики і механіки НАН України 2004
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/123757
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Programmed motion of mechanical systems / Veljko A. Vujičić // Механика твердого тела: Межвед. сб. науч. тр. — 2004. — Вип. 34. — С. 199-208. — Бібліогр.: 5 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-123757
record_format dspace
spelling Vujičić, Veljko A.
2017-09-09T10:07:33Z
2017-09-09T10:07:33Z
2004
Programmed motion of mechanical systems / Veljko A. Vujičić // Механика твердого тела: Межвед. сб. науч. тр. — 2004. — Вип. 34. — С. 199-208. — Бібліогр.: 5 назв. — англ.
0321-1975
https://nasplib.isofts.kiev.ua/handle/123456789/123757
62-50
The main results of this contribution are new methods of solving of adjoint systems of 6n di erential nonlinear equations and its application in classical and celestial mechanics. At first, we are observing a general dynamic system of n differential equations of the first order, which contain n independent functions x(t) and n unknown composite functions X(x(t)). A programme of motion of such one is described by n independent finite algebraic equations f(x) = 0. For realization of the control motion it is necessary to de ne functions X(x) and within them also control functions. It is shown that such dynamic systems do not correspond to mechanical systems. Defining of control motion of mechanical systems is much more complex. It is explained which of the di erential equations of motion are used, and what are the consequences. It is also manifested that 3N Newton's differential equations of motions and n = 3N−k, k < 3N, Lagrange's differential equations of second kind, or 2n Hamilton's differential equations on manifolds, are not giving the same results at defining of forces, being of the primary importance for control motion.
en
Інститут прикладної математики і механіки НАН України
Механика твердого тела
Programmed motion of mechanical systems
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Programmed motion of mechanical systems
spellingShingle Programmed motion of mechanical systems
Vujičić, Veljko A.
title_short Programmed motion of mechanical systems
title_full Programmed motion of mechanical systems
title_fullStr Programmed motion of mechanical systems
title_full_unstemmed Programmed motion of mechanical systems
title_sort programmed motion of mechanical systems
author Vujičić, Veljko A.
author_facet Vujičić, Veljko A.
publishDate 2004
language English
container_title Механика твердого тела
publisher Інститут прикладної математики і механіки НАН України
format Article
description The main results of this contribution are new methods of solving of adjoint systems of 6n di erential nonlinear equations and its application in classical and celestial mechanics. At first, we are observing a general dynamic system of n differential equations of the first order, which contain n independent functions x(t) and n unknown composite functions X(x(t)). A programme of motion of such one is described by n independent finite algebraic equations f(x) = 0. For realization of the control motion it is necessary to de ne functions X(x) and within them also control functions. It is shown that such dynamic systems do not correspond to mechanical systems. Defining of control motion of mechanical systems is much more complex. It is explained which of the di erential equations of motion are used, and what are the consequences. It is also manifested that 3N Newton's differential equations of motions and n = 3N−k, k < 3N, Lagrange's differential equations of second kind, or 2n Hamilton's differential equations on manifolds, are not giving the same results at defining of forces, being of the primary importance for control motion.
issn 0321-1975
url https://nasplib.isofts.kiev.ua/handle/123456789/123757
citation_txt Programmed motion of mechanical systems / Veljko A. Vujičić // Механика твердого тела: Межвед. сб. науч. тр. — 2004. — Вип. 34. — С. 199-208. — Бібліогр.: 5 назв. — англ.
work_keys_str_mv AT vujicicveljkoa programmedmotionofmechanicalsystems
first_indexed 2025-12-07T18:37:19Z
last_indexed 2025-12-07T18:37:19Z
_version_ 1850875722205233152