Бифуркация стационарных решений системы уравнений Эйлера–Кирхгофа в случае симметрии

Рассмотрено решение дифференциальных уравнений, одинаково описывающих поведение двух различных механических систем: движение тяжелою гиростата около неподвижной точки и нелинейный изгиб и кручение упругого стержня. Считается, что 15 механических системах присутствует симметрия 15 значениях физически...

Full description

Saved in:
Bibliographic Details
Published in:Механика твердого тела
Date:2005
Main Authors: Илюхин, А.А., Колесников, С.А.
Format: Article
Language:Russian
Published: Інститут прикладної математики і механіки НАН України 2005
Online Access:https://nasplib.isofts.kiev.ua/handle/123456789/123777
Tags: Add Tag
No Tags, Be the first to tag this record!
Journal Title:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Cite this:Бифуркация стационарных решений системы уравнений Эйлера–Кирхгофа в случае симметрии / А.А. Илюхин, С.А. Колесников // Механика твердого тела: Межвед. сб. науч. тр. — 2005. — Вип. 35. — С. 174-188. — Бібліогр.: 14 назв. — рос.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Description
Summary:Рассмотрено решение дифференциальных уравнений, одинаково описывающих поведение двух различных механических систем: движение тяжелою гиростата около неподвижной точки и нелинейный изгиб и кручение упругого стержня. Считается, что 15 механических системах присутствует симметрия 15 значениях физических параметров (гиростат динамически симметричный, либо стержень имеет равные жесткости при изгибе). Для инвариант пых соотношений, полученных А.И. Докшевичем, найдены условия, когда от стационарных решений ответвляются нетривиальные решения. Для нелинейного граничного функционала, соответствующего решению А.И. Докшевича, показана также неединственность существования стационарных решений, что свидетельствует о неустойчивости равномерных вращений симметричного гиростата и поджатых положений равновесия винтовой пружины.
ISSN:0321-1975