Initial time value problem solutions for evolution inclusions with Sk type operators
For a large class of operator inclusions, including those generated by maps of Sk type, we obtain a general theorem on existence of solutions. We apply this result to some particular examples. This theorem is proved using the method of Faedo-Galerkin. Одержано загальну теорему про існування розв’язк...
Збережено в:
| Дата: | 2009 |
|---|---|
| Автори: | , , |
| Формат: | Стаття |
| Мова: | English |
| Опубліковано: |
Навчально-науковий комплекс "Інститут прикладного системного аналізу" НТУУ "КПІ" МОН та НАН України
2009
|
| Теми: | |
| Онлайн доступ: | https://nasplib.isofts.kiev.ua/handle/123456789/12392 |
| Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
| Назва журналу: | Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| Цитувати: | Initial time value problem solutions for evolution inclusions with Sk type operators / P.O. Kasyanov, V.S. Mel'nik, S. Toscano // Систем. дослідж. та інформ. технології. — 2009. — № 1. — С. 116-130. — Бібліогр.: 31 назв. — англ. |
Репозитарії
Digital Library of Periodicals of National Academy of Sciences of Ukraine| id |
nasplib_isofts_kiev_ua-123456789-12392 |
|---|---|
| record_format |
dspace |
| spelling |
Kasyanov, P.O. Mel'nik, V.S. Toscano, S. 2010-10-07T08:25:37Z 2010-10-07T08:25:37Z 2009 Initial time value problem solutions for evolution inclusions with Sk type operators / P.O. Kasyanov, V.S. Mel'nik, S. Toscano // Систем. дослідж. та інформ. технології. — 2009. — № 1. — С. 116-130. — Бібліогр.: 31 назв. — англ. 1681–6048 https://nasplib.isofts.kiev.ua/handle/123456789/12392 517.9 For a large class of operator inclusions, including those generated by maps of Sk type, we obtain a general theorem on existence of solutions. We apply this result to some particular examples. This theorem is proved using the method of Faedo-Galerkin. Одержано загальну теорему про існування розв’язків для широкого класу операторних включень, у тому числі ті, які породжуються відображеннями типу Sk . Результат застосовано до деякого окремого прикладу. Теорему доведено за допомогою методу Фаедо-Гальоркіна. Получена общая теорема о существовании решений для широкого класса операторних включений, в том числе те, которые порождаются отображениями типа Sk . Результат применен к некоторому частному примеру. Теорема доказана с помощью метода Фаэдо-Галeркина. en Навчально-науковий комплекс "Інститут прикладного системного аналізу" НТУУ "КПІ" МОН та НАН України Нові методи в системному аналізі, інформатиці та теорії прийняття рішень Initial time value problem solutions for evolution inclusions with Sk type operators Задача Коші для еволюційних включень з відображеннями типу Sk Задача Коши для эволюционных включений с отображениями типа Sk Article published earlier |
| institution |
Digital Library of Periodicals of National Academy of Sciences of Ukraine |
| collection |
DSpace DC |
| title |
Initial time value problem solutions for evolution inclusions with Sk type operators |
| spellingShingle |
Initial time value problem solutions for evolution inclusions with Sk type operators Kasyanov, P.O. Mel'nik, V.S. Toscano, S. Нові методи в системному аналізі, інформатиці та теорії прийняття рішень |
| title_short |
Initial time value problem solutions for evolution inclusions with Sk type operators |
| title_full |
Initial time value problem solutions for evolution inclusions with Sk type operators |
| title_fullStr |
Initial time value problem solutions for evolution inclusions with Sk type operators |
| title_full_unstemmed |
Initial time value problem solutions for evolution inclusions with Sk type operators |
| title_sort |
initial time value problem solutions for evolution inclusions with sk type operators |
| author |
Kasyanov, P.O. Mel'nik, V.S. Toscano, S. |
| author_facet |
Kasyanov, P.O. Mel'nik, V.S. Toscano, S. |
| topic |
Нові методи в системному аналізі, інформатиці та теорії прийняття рішень |
| topic_facet |
Нові методи в системному аналізі, інформатиці та теорії прийняття рішень |
| publishDate |
2009 |
| language |
English |
| publisher |
Навчально-науковий комплекс "Інститут прикладного системного аналізу" НТУУ "КПІ" МОН та НАН України |
| format |
Article |
| title_alt |
Задача Коші для еволюційних включень з відображеннями типу Sk Задача Коши для эволюционных включений с отображениями типа Sk |
| description |
For a large class of operator inclusions, including those generated by maps of Sk type, we obtain a general theorem on existence of solutions. We apply this result to some particular examples. This theorem is proved using the method of Faedo-Galerkin.
Одержано загальну теорему про існування розв’язків для широкого класу операторних включень, у тому числі ті, які породжуються відображеннями типу Sk . Результат застосовано до деякого окремого прикладу. Теорему доведено за допомогою методу Фаедо-Гальоркіна.
Получена общая теорема о существовании решений для широкого класса операторних включений, в том числе те, которые порождаются отображениями типа Sk . Результат применен к некоторому частному примеру. Теорема доказана с помощью метода Фаэдо-Галeркина.
|
| issn |
1681–6048 |
| url |
https://nasplib.isofts.kiev.ua/handle/123456789/12392 |
| citation_txt |
Initial time value problem solutions for evolution inclusions with Sk type operators / P.O. Kasyanov, V.S. Mel'nik, S. Toscano // Систем. дослідж. та інформ. технології. — 2009. — № 1. — С. 116-130. — Бібліогр.: 31 назв. — англ. |
| work_keys_str_mv |
AT kasyanovpo initialtimevalueproblemsolutionsforevolutioninclusionswithsktypeoperators AT melnikvs initialtimevalueproblemsolutionsforevolutioninclusionswithsktypeoperators AT toscanos initialtimevalueproblemsolutionsforevolutioninclusionswithsktypeoperators AT kasyanovpo zadačakošídlâevolûcíinihvklûčenʹzvídobražennâmitipusk AT melnikvs zadačakošídlâevolûcíinihvklûčenʹzvídobražennâmitipusk AT toscanos zadačakošídlâevolûcíinihvklûčenʹzvídobražennâmitipusk AT kasyanovpo zadačakošidlâévolûcionnyhvklûčeniisotobraženiâmitipask AT melnikvs zadačakošidlâévolûcionnyhvklûčeniisotobraženiâmitipask AT toscanos zadačakošidlâévolûcionnyhvklûčeniisotobraženiâmitipask |
| first_indexed |
2025-11-26T00:18:47Z |
| last_indexed |
2025-11-26T00:18:47Z |
| _version_ |
1850599836198371328 |
| fulltext |
© P.O. Kasyanov, V.S. Mel'nik , S. Toscano, 2009
116 ISSN 1681–6048 System Research & Information Technologies, 2009, № 1
TIДC
НОВІ МЕТОДИ В СИСТЕМНОМУ АНАЛІЗІ,
ІНФОРМАТИЦІ ТА ТЕОРІЇ ПРИЙНЯТТЯ РІШЕНЬ
УДК 517.9
INITIAL TIME VALUE PROBLEM SOLUTIONS FOR
EVOLUTION INCLUSIONS WITH kS TYPE OPERATORS
P.O. KASYANOV, V.S. MEL'NIK, S. TOSCANO
For a large class of operator inclusions, including those generated by maps of kS
type, we obtain a general theorem on existence of solutions. We apply this result to
some particular examples. This theorem is proved using the method of Faedo-
Galerkin.
INTRODUCTION
One of the most effective approach to investigate nonlinear problems, represented
by partial differential equations, inclusions and inequalities with boundary values,
consists in the reduction of them into differential-operator inclusions in infinite-
dimensional spaces governed by nonlinear operators. In order to study these
objects the modern methods of nonlinear analysis have been used [7, 8, 17, 28].
Convergence of approximate solutions to an exact solution of the differential-
operator equation or inclusion is frequently proved on the basis of a monotony
or a pseudomonotony of corresponding operator. In applications, as a
pseudomonotone operator the sum of radially continuous monotone bounded
operator and strongly continuous operator was considered [8]. Concrete examples
of pseudomonotone operators were obtained by extension of elliptic differential
operators when only their summands complying with highest derivatives satisfied
the monotony property [17]. The papers of F. Browder and P. Hess [3, 4] became
classical in the given direction of investigations. In particular in F. Browder and
P. Hess work [4] the class of generalized pseudomonotone operators was
introduced. Let W be real Banach space continuously embedded in real reflexive
Banach space Y with dual space *Y , R→×⋅〉〈⋅ YYY
*:, be the pairing. Further,
as )( *YCv we consider the family of all nonempty closed convex bounded
subsets of the space *Y . Multi-valued map )(: *YCYA v→ refers to be
generalized pseudomonotone on W if for each pair of sequences Wy nn ⊂≥1}{
and *
1}{ Yd nn ⊂≥ such that )( nn yAd ∈ , yyn → weakly in W , ddn → weakly
in *Y , from the inequality
YYnnn
ydyd 〉〈≤〉〈
∞→
,,lim
Initial time value problem solutions for evolution inclusions with kS type operators
Системні дослідження та інформаційні технології, 2009, № 1 117
it follows that )(yAd ∈ and YYnn ydyd 〉〈→〉〈 ,, . I.V. Skrypnik's idea of passing
to subsequences in classical definitions [26], realized for stationary and evolution
inclusions in M.Z. Zgurovsky, P.O. Kasyanov, V.S. Mel'nik and J. Valero papers
(see [12–16], [18–21] and citations there) enabled to consider the class of
0λ
w -
pseudomonotone maps which includes, in particular, a class of generalized
pseudomonotone on W multi-valued operators and it is closed within summing.
Let us remark that any multi-valued map )(: *YCYA v→ naturally generates
upper and, accordingly, lower form:
XywdyAwdyA YyAdY
yAd
∈〉〈〉〈
∈∈
+ ωωω ,,,inf=]),([,,sup=]),([
)(_
)(
.
Properties of the given objects have been investigated by M.Z. Zgurovsky and
V.S. Mel'nik (see [16, 18, 21]). Thus, together with the classical coercivity
condition for singlevalued maps
+∞→
〉〈
Y
Y
y
yyA ),(
as +∞→Yy
which ensures the important a priori estimations, arises +-coercivity (and,
accordingly, –-coercivity) for multivalued maps
.as,
]),([ )( +∞→+∞→−+
Y
Y
y
y
yyA
+-coercivity is weaker condition than –-coercivity.
Recent development of the monotony method in the theory of differential-
operator inclusions and evolutionary variational inequalities ensures resolvability
of the given objects under the conditions of coercivity, quasiboundedness and the
generalized pseudomonotony (see for example [5–6, 9–10, 23–25, 27] and
citations there). V.S. Mel'nik's results [22] allows to consider evolution inclusions
with + -coercive
0λ
w -pseudomonotone quasibounded multimappings (see [12]–
[16], [31] and citations there).
In this paper we introduce the differential-operator scheme for investigation
nonlinear boundary-value problems with summands complying with highest
derivatives are not satisfied monotone condition. A multi-valued map →YA :
)( *YCv→ satisfies the property kS on W , if for any sequence Wy nn ⊂≥0}{
such that 0yyn → weakly in W , 0ddn → weakly in *Y as +∞→n , where
)( nn yAd ∈ 1≥∀n , from
0=,lim 0 Ynn
n
yyd 〉−〈
∞→
,
it follows that )( 00 yAd ∈ . Now we consider the simple example of kS type
operator. Let (0,1)=Ω , )(= 1
0 ΩHY be the real Sobolev space with dual space
)(= 1* Ω−HY (see for details [8]). Let *1,1][: YYA →−× defined by the rule
⎟
⎠
⎞
⎜
⎝
⎛− y
dx
d
dx
dyA αα =),( .
P.O. Kasyanov, V.S. Mel'nik , S. Toscano
ISSN 1681–6048 System Research & Information Technologies, 2009, № 1 118
Then the multivalued map
YyyAy ∈−∈ },1,1][|),({=)( ααA
satisfies the property kS , it is +-coercive, but it is not –-coercive, it is not general-
ized pseudomonotone and )( A− is not generalized pseudomonotone too (see [11]
for detailes). We remark that stationary inclusions for multimaps with kS
properties were considered by V.O. Kapustyan, P.O. Kasyanov, O.P. Kogut [11],
the evolution inclusions for + -coercive
0λ
w -pseudomonotone quasibounded
maps by V.S. Mel'nik, P.O. Kasyanov, J. Valero (see [12]–[16], [31] and citations
there). The obtained in this paper results are new results for evolution equations too.
PROBLEM DEFINITION
Let ),(
11 VV ⋅ and ),(
22 VV ⋅ be some reflexive separable Banach spaces,
continuously embedded in the Hilbert space )),(,( ⋅⋅H such that
21=: VVV ∩ is dense in spaces 21,VV and H (1)
After the identification *HH ≡ we get
,, *
22
*
11 VHVVHV ⊂⊂⊂⊂ (2)
with continuous and dense embeddings [8], where ),( *
*
iViV ⋅ is the topologically
conjugate of iV space with respect to the canonical bilinear form
R→×⋅〉〈⋅ iiiV VV *:, ( 21,=i )
which coincides on VH × with the inner product ),( ⋅⋅ on H. Let us consider the
functional spaces
),;();(= iipiri VSLHSLX ∩
where ][0,= TS , +∞<<0 T , +∞≤ <<1 ii rp 1,2)=(i . The spaces iX are
Banach spaces with the norms );();(= HSyVSyy
ir
LiipLiX + . Moreover, iX
is a reflexive space.
Let us also consider the Banach space 21= XXX ∩ with the norm
21
= XXX yyy + . Since the spaces );();( * HSLVSL
iriiq ′
+ and *
iX are
isometrically isomorphic, we identify them. Analogously,
),;();();();(==
21
*
22
*
11
*
2
*
1
* HSLHSLVSLVSLXXX rrqq ′′
++++
where 1== 1111 −−−
′
− ++ iiii qprr .
Let us define the duality form on XX ×*
+〉〈++〉〈 ∫∫∫ τττττττττ dyfdyfdyfyf V
S
H
S
H
S
1211211 )(),())(),(())(),((=,
,))(),((=)(),(
222 ττττττ dyfdyf
S
V
S
∫∫ 〉〈+
Initial time value problem solutions for evolution inclusions with kS type operators
Системні дослідження та інформаційні технології, 2009, № 1 119
where 22211211= fffff +++ , );(1 HSLf
iri ′
∈ , );( *
2 iiqi VSLf ∈ . Remark, that
for each *Xf ∈
⎩
⎨
⎧
+++
∈
′
∈
;);('
max
:
inf=
1
11
1,2)=()*;(2),;(1
22211211=
* HSf
fff
f
rL
iiVS
iqLifHS
ir
Lif
ffX
.);(;);(;);(' *
22
22*
11
21
2
12
⎭
⎬
⎫
VSfVSfHSf
qLqLrL
Following by [17], we may assume that there is a separable Hilbert space σV
such that 1VV ⊂σ , 2VV ⊂σ with continuous and dense embedding, HV ⊂σ with
compact and dense embedding. Then
**
22
**
11 , σσσσ VVHVVVVHVV ⊂⊂⊂⊂⊂⊂⊂⊂
with continuous and dense embedding. For 1,2=i let us set
,=),;();(= 2,1,, σσσσσ XXXVSLHSLX
ipiri ∩∩
*
2,
*
1,
***
, =),;();(= σσσσσ XXXVSLHSLX
iqiri ++
′
,
σσσσσ 2,1,
*
,, =},|{= WWWXyXyW iii ∩∈′∈ .
For multivalued (in general) map *: XXA ⇒ let us consider such problem:
⎩
⎨
⎧
⊂∈
∋+′
),;(,=(0)
,)(
HSCWuau
fuAu
(3)
where Ha∈ and *Xf ∈ are arbitrary fixed elements. The goal of this work is to
prove the solvability for the given problem by the Faedo-Galerkin method.
THE CLASS )( *XH
Let us note that )( *XB H∈ , if for an arbitrary measurable set SE ⊂ and for
arbitrary Bvu ∈, the inclusion Buvu E ∈−+ χ)( is true. Here and further for
*Xd ∈
)()(=))(( τχττχ EE dd for a.e.
⎩
⎨
⎧ ∈
∈
.else,0
,,1
=)(,
E
S E
τ
τχτ
Lemma 1 [30]. )( *XB H∈ if and only if 1≥∀n , Bd n
ii ⊂∀ 1=}{ and for
arbitrary measurable pairwise disjoint subsets n
jjE 1=}{ of the set S : SE j
n
j =1=∪
the following Bd
jEj
n
j ∈∑ χ1= is true.
Let us remark, that )(, ** XX H∈∅ ; *Xf ∈∀ )(}{ *Xf H∈ ; if *: VSK ⇒
is an arbitrary multi-valued map, then
P.O. Kasyanov, V.S. Mel'nik , S. Toscano
ISSN 1681–6048 System Research & Information Technologies, 2009, № 1 120
).(}a.e.for)()(|{ ** XSttKtfXf H∈∈∈∈
At the same time for an arbitrary 0\*Vv∈ that is not equal to 0 the closed
convex set ),([0,1]},|{= ** XvfXfB H∉∈≡∈ αα as Bvg T ∉⋅⋅⋅ )(=)( /2][0;χ .
CLASSES OF MULTI-VALUED MAPS
Let us consider now the main classes of multi-valued maps. Let Y be some
reflexive Banach space, *Y be its topologically adjoint, R→×⋅〉〈⋅ YYY
*:, be the
pairing, *: YYA ⇒ be the strict multi-valued map, i.e. ∅≠)(yA .Xy∈∀ For
this map let us define the upper *
)(
sup=)(
Xyd
dyA
A∈
+ and the lower
*)(_ inf=)(
Xyd
dyA
A∈
norms, where Yy∈ . Let us consider the next maps
which are connected with :A *:co YYA ⇒ and ,:co *YYA ⇒ which are defined
by the next relations ))((co=))(co( yAyA and ))((co=))(co( yAyA
respectively, where ))((co yA is the weak closeness of the convex hull of the set
)(yA in the space *Y . It is known that strict multi-valued maps *:, YYBA ⇒
have such properties [16, 18, 20]:
1) +++ +≤+ ]),([]),([]),([ 2121 vyAvyAvvyA ,
−−− +≥+ ]),([]),([]),([ 2121 vyAvyAvvyA y∀ , 1v , Yv ∈2 ;
2) −+ −− ]),([=]),([ vyAvyA ,
)()()( ]),([]),([=]),()([ −+−+−+ ++ vyBvyAvyByA Yvy ∈∀ , ;
3) )()( ]),(c[=]),([ −+−+ vyAovyA Yvy ∈∀ , ;
4) YvyAvyA )()( )(]),([ −+−+ ≤ , +++ +≤+ )()()()( yByAyByA ,
partially the inclusions )(c yAod ∈ is true if and only if
.,]),([ YvvdvyA Y ∈∀〉〈≥+
Let .YD ⊂ If R→×⋅⋅ YDa :),( , then for every Dy∈ the functional
),( wyawY ∋ is positively homogeneous convex and lower semi-continuous if
and only if there exists the multi-valued map *: YYA ⇒ with the definition
domain DAD =)( such, that
.),(]),([=),( YwADywyAwya ∈∀∈∀+
Further, yyn in Y will mean, that ny converges weakly to y in Y .
Let W be some normalized space that continuously embedded into Y . Let
us consider multi-valued map *: YYA ⇒ .
Definition 1. The strict multi-valued map *: YYA ⇒ is called:
Initial time value problem solutions for evolution inclusions with kS type operators
Системні дослідження та інформаційні технології, 2009, № 1 121
• 0λ -pseudomonotone on W , if for any sequence Wy nn ⊂≥0}{ such, that
0yyn in W , 0ddn in *Y as +∞→n , where )(co nn yAd ∈ 1≥∀n , from
the inequality
0,lim 0 ≤〉−〈
∞→
Ynnn
yyd (4)
it follows the existence of subsequence 1},{ ≥kknkn dy from 1},{ ≥nnn dy , for that
YwwyyAwyd Yknkn
k
∈∀−≥〉−〈 −
∞→
]),([,lim 00 (5)
is fulfilled;
• bounded, if for every 0>L there exists such 0>l , that
LyYy Y ≤∈∀ : , it follows that lyA ≤+)( .
Definition 2. The strict multi-valued map *: XXA ⇒ is called:
• the operator of the Volterra type , if for arbitrary Xvu ∈, , St∈ from the
equality )(=)( svsu for a.e. ][0,ts∈ , it follows, that ++ ]),([=]),([ tt vAuA ξξ
Xt ∈∀ξ : 0=)(stξ for a.e. ];[0,\ tSs∈
• +(-)-coercive, if there exists the real function RR →+:γ such, that
+∞→)(sγ as +∞→s and
;)(]),([ )( YyyyyyA YY ∈∀≥−+ γ
• demi-closed, if from that fact, that yyn → in Y , ddn in *Y , where
)( nn yAd ∈ , 1≥n , it follows, that )(yAd ∈ .
Let us consider multi-valued maps, that act from mX into *
mX , 1≥m . Let
us remark, that embeddings *
mmm XYX ⊂⊂ are continuous, and the embedding
mW into mX is compact [17].
Definition 3. The multi-valued map )(: *
mvm XCX →A is called ),( *
mm XW -
weakly closed, if from that fact, that yyn in ,mW ddn in ,*
mX )( nn yd A∈
1≥∀n it follows, that ).(yd A∈
Lemma 2. The multi-valued map )(: *
mvm XCX →A satisfies the property
kS on mW if and only if )(: *
mvm XCX →A is ),( *
mm XW -weakly closed.
Proof. Let us prove the necessity. Let yyn in ,mW ddn in ,*
mX where
)( nn yd A∈ 1.≥∀n Then yyn → in mX and 0, →〉−〈
mXnn yyd as .+∞→n
Therefore, in virtue of A satisfies the kS property on ,mW we obtain, that
)(yd A∈ .
Let us prove sufficiency. Let yyn in ,mW ddn in ,*
mX
0, ≤〉−〈
mXnn yyd as +∞→n , where )( nn yd A∈ 1.≥∀n Then yyn → in
mX and ).(yd A∈
P.O. Kasyanov, V.S. Mel'nik , S. Toscano
ISSN 1681–6048 System Research & Information Technologies, 2009, № 1 122
The lemma is proved.
Corollary 1. If the multi-valued map )(: *
mvm XCX →A satisfies the
property kS on mW , then A is 0λ -pseudomonotone on mW .
THE MAIN RESULTS
In the next theorem we will prove the solvability and justify the Faedo-Galerkin
method for the problem (3).
Theorem 1. Let 0=a , )()(: ** XXCXA v H∩→ be + -coercive bounded
map of the Volterra type, that satisfies the property kS on σW . Then for arbitrary
*Xf ∈ there exists at least one solution of the problem (3), that can be obtained
by the Faedo-Galerkin method.
Proof. From +-coercivity for *: XXA ⇒ it follows, that Xy∈∀
.)(]),([ XX yyyyA γ≥+
So, :0>0r∃ 0.>)( *0 ≥
X
frγ Therefore,
0.],)([=: 0 ≥−∈∀ +yfyAryXy X (6)
T h e s o l v a b i l i t y o f a p p r o x i m a t e p r o b l e m s.
Let us consider the complete vectors system Vh ii ⊂≥1}{ such that
1α ) 1}{ ≥iih orthonormal in H ;
2α ) 1}{ ≥iih orthogonal in V ;
3α ) Vvvhvhi iiVi ∈∀≥∀ ),(=),(1 λ ,
where ∞→≤≤ jλλλ ,...,0 21 as ∞→j , V),( ⋅⋅ is the natural inner product in V ,
i.e. 1}{ ≥iih is a special basis [29]. Let for each 1≥m m
iim hH 1=}{span= , on which
we consider the inner product induced from H that we again denote by ),( ⋅⋅ . Due
to the equivalence of *H and H it follows that mm HH ≡* ; );(=
0 mpm HSLX ,
);(=
0
*
mqm HSLX , },{max= 210 rrp , 1>0q : 1=1/1/ 00 qp + , =⋅〉〈⋅
mX,
mmXX X×⋅〉〈⋅= *|, , }|{:= *
mmm XyXyW ∈′∈ , where y′ is the derivative of an
element mXy∈ is considered in the sense of ),(*
mHSD . For any 1≥m let
);( XXI mm L∈ be the canonical embedding of mX in X , *
mI be the adjoint
operator to mI . Then
1.=);1 **(
*
σσ XXmIm
L
≥∀ (7)
Let us consider such maps [12]:
.:=),(:=: *** fIfXCXIAIA mmvmmmm →
So, from (6) and corollary 1, applying analogical thoughts with [12], [14] we
will obtain, that
Initial time value problem solutions for evolution inclusions with kS type operators
Системні дослідження та інформаційні технології, 2009, № 1 123
)1j mA is 0λ -pseudomonotone on mW ;
)2j mA is bounded;
)3j 0],)([ ≥− +yfyA mm mXy∈∀ : 0= ry X .
Let us consider the operator *)(: mmmm XXLDL →⊂ with the definition
domain
,=}0=(0)|{=)( 0
mmm WyWyLD ∈
that acts by the rule:
,=0 yyLWy mm ′∈∀
where the derivative y′ we consider in the sense of the distributions space
);(*
mHSD . From [12] for the operator mL the next properties are true:
)4j mL is linear;
)5j 0,0 ≥〉〈∈∀ yyLWy mm ;
)6j mL is maximal monotone.
Therefore, conditions 1j )– 6j ) and the theorem 3.1 from [13] guarantees the
existence at least one solution )( mm LDy ∈ of the problem:
,,)()( 0ryfyAyL Xmmmmmm ≤∋+
that can be obtained by the method of singular perturbations. This means, that my
is the solution of such problem:
⎪⎩
⎪
⎨
⎧
≤∈
∋+′
,,,0=(0)
)(
RyWyy
fyAy
Xmmmm
mmmm
(8)
where 0= rR .
P a s s i n g t o t h e l i m i t.
From the inclusion from (8) it follows, that 1≥∀m :)( mm yAd ∈∃
).(=)(= **
mmmmmmmm yAIyAyfdI ∈′− (9)
1 . The boundedness of 1}{ ≥mmd in *X follows from the boundedness of A
and from (8). Therefore,
.1:0> 1*1 cdmc
Xm ≤≥∀∃ (10)
2 . Let us prove the boundedness 1}{ ≥′ mmy in *
σX . From (9) it follows, that
1≥∀m )(= *
mmm dfIy −′ , and, taking into account (7), (8) and (10) we have:
.<2* +∞≤≤′ cyy WmXm σσ
(11)
In virtue of (8) and the continuous embedding );( mm HSCW ⊂ we obtain
(see [24]) that 0>3c∃ such, that
.)(1, 3ctyStm Hm ≤∈∀≥∀ (12)
P.O. Kasyanov, V.S. Mel'nik , S. Toscano
ISSN 1681–6048 System Research & Information Technologies, 2009, № 1 124
3 . In virtue of estimations from (10)–(12), due to the Banach-Alaoglu
theorem, taking into account the compact embedding YW ⊂ , it follows the
existence of subsequences
1111 }{}{,}{}{ ≥≥≥≥ ⊂⊂ mmkkmmmkkm ddyy
and elements Wy∈ , *Xd ∈ , for which the next converges take place:
yy
km in ddW
km, in *X
)()( tyty
km in H for each St∈ , (13)
)()( tyty
km → in H for a.e. St∈ , as ∞→k .
From here, as 1≥∀k 0=(0)
kmy , then 0=(0)y .
4 . Let us prove, that
.= dfy −′ (14)
Let N∈∈ nSD ),(ϕ and nHh∈ . Then 1≥∀k : nmk ≥ we have:
,,'=),))()(')((( 〉+〈+∫ ψττττϕ
kmkmkmkm
S
dyhddy
where XXh n ⊂∈⋅ )(=)( τϕτψ . Let us remark, that here we use the property of
Bochner integral [8](theorem IV.1.8, c.153). Since for nmk ≥ nkm HH ⊃ , then
.,=,' 〉〈〉+〈 ψψ
kmkmkm fdy Therefore, 1≥∀k : nmk ≥
.,)()(=,
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
〉〈 ∫ hdff
S
km τττϕψ
Hence, for all 1≥k : nmk ≥
→−=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
′∫ ψτττϕ ,,)()(
kk m
S
m dfhdy
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−→ ∫
S
hddf ,)()(()( ττττϕ as ∞→k . (15)
The last follows from the weak convergence
kmd to d in *X .
From the convergence (13) we have:
( )hyhdy
S
mk
),(,)()( ϕτττϕ ′→
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
′∫ as ∞→k , (16)
where
ττϕτϕϕϕ dyyyS
S
)()()()()( ′−=′−=′∈∀ ∫D .
Initial time value problem solutions for evolution inclusions with kS type operators
Системні дослідження та інформаційні технології, 2009, № 1 125
Therefore, from (15) and (16) it follows, that
.,))()()((=)),(( )(
1
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−′∈∀∈∀ ∫
≥
hddfhyHhS
S
m
m
ττττϕϕϕ ∪D
Since m
m
H∪
1≥
is dense in V we have, that
.))()()((=)()( ττττϕϕϕ ddfyS
S
−′∈∀ ∫D
Therefore, *= Xdfy ∈−′ .
5 . In order to prove, that y is the solution of the problem (3) it remains to
show, that y satisfies the inclusion fyAy ∋+′ )( . In virtue if identity (14), it is
enough to prove, that )(yAd ∈ .
From (13) it follows the existence of Sll ⊂≥1}{τ such that Tlτ as
+∞→l and
)()(1 llkm yyl ττ →≥∀ in H as +∞→k (17)
Let us show that for any 1≥l
0=)(:]),([, twXwwyAwd ∈∀≤〉〈 + for a e. ],[ Tt lτ∈ . (18)
Let us fix an arbitrary 1}{ ≥∈ llττ . For 1,2=i let us set
),()(=)(),;,();,(=)( 2,1,, ττττττ σσσσσ XXXVTLHTLX
ipiri ∩∩
)()(=)(),;,();,(=)( *
2,
*
1,
***
, ττττττ σσσσσ XXXVTLHTLX
iqiri ++
′
,
)()(=)()},(|)({=)( 2,1,
*
,, ττττττ σσσσσ WWWXyXyW iii ∩∈′∈ .
1.),(=),(=0 ≥kyaya
kmk ττ
Similarly we introduce )(τX , )(* τX , )(τW . From (17) it follows that
0aak → in H as +∞→k . (19)
For any 1≥k let )(τWzk ∈ be such that
⎩
⎨
⎧ ∋+′
,=)(
,0)(
kk
kk
az
zJz
τ
(20)
where ))(()(: * ττ XCXJ v→ be the duality (in general multivalued) mapping,
i.e.
).(,)(=)(==]),([=]),([ 222
)( ττ XuuJuJuuuJuuJ X ∈−+−+
We remark that the problem (20) has a solution )(τWzk ∈ because J is
monotone, coercive, bounded and demiclosed (see [1–2, 8, 13]). Let us also note
that for any 1≥k
P.O. Kasyanov, V.S. Mel'nik , S. Toscano
ISSN 1681–6048 System Research & Information Technologies, 2009, № 1 126
0.=2,2=)( 2
)()(
22
ττ XkXkkHkHk zzzaTz +〉′〈−
Hence,
.
2
1=)(1 3)(* cazzk HkXkXk ≤≤′≥∀ ττ
Due to (19), similarly to [8, 13], as +∞→k , kz weakly converges in W to the
unique solution Wz ∈0 of the problem (20) with initial time value condition
0=(0) az . Moreover,
0zzk → in )(τX as +∞→k (21)
because 2
)(0
2
)(lim ττ XXkk
zz ≤
+∞→
, 0zzk in )(τX and )(τX is a Hilbert space.
For any 1≥k let us set
⎪⎩
⎪
⎨
⎧ ∈
⎪⎩
⎪
⎨
⎧ ∈
,elsewhere),(ˆ
],[0,if),(
=)(
,elsewhere),(
],[0,if ),(
=)(
td
ttd
tg
tz
tty
tu
k
km
k
k
km
k
ττ
where )(ˆ
kk uAd ∈ is an arbitrary. As 1}{ ≥kku is bounded, *: XXA ⇒ is bounded,
then 1}ˆ{ ≥kkd is bounded in *X . In virtue of (21), (13), (17)
( ) =)()(),(lim=,lim
0
dttytytduug kkkkkk
−〉−〈 ∫+∞→+∞→
τ
( ) ( ) =)()(),('lim=)()(),(')(lim=
00
dttytytydttytytytf kk
k
kk
k
−−− ∫∫ +∞→+∞→
ττ
( ) ( ) =)(),('lim)((0)
2
1lim=
0
22 dttytyyy k
k
HkHk
k ∫+∞→+∞→
+−
τ
τ
( ) ( ) 0.=)(),()((0)
2
1=
0
22 dttytyyy HH ′+− ∫
τ
τ
So,
0.=,lim 〉−〈
+∞→
uug kk
k
(22)
Let us show that )( kk uAg ∈ 1≥∀k . For any Xw∈ let us set
⎪⎩
⎪
⎨
⎧ ∈
⎩
⎨
⎧ ∈
.elsewhere),(
],[0, if ,0
=)(
,elsewhere,0
],[0,if ),(
=)(
tw
t
tw
ttw
tw
ττ τ
τ
In virtue of A is the Volterra type operator we obtain that
≤〉〈+〉〈〉〈 τ
τ wdwdwg kkmk ,ˆ,=,
=,ˆ]),([ 〉〈+≤ +
τ
τ wdwyA kkm
≤〉〈++
τ
τ wdwuA kk ,ˆ]),([=
Initial time value problem solutions for evolution inclusions with kS type operators
Системні дослідження та інформаційні технології, 2009, № 1 127
.]),([]),([ ++ +≤ τ
τ wuAwuA kk
Due to )()( *XuA k H∈ , similarly to [30], we obtain that
.]),([=]),([]),([ +++ + wuAwuAwuA kkk
τ
τ
As Xw∈ is an arbitrary, then )( kk uAg ∈ 1≥∀k . Due to 1}{ ≥kku is
bounded in X , then 1}{ ≥kkg is bounded in *X . Thus, up to a subsequence
11 },{},{ ≥≥ ⊂ kkkjjkjk gugu , for some Wu∈ , *Xg∈ the next convergence takes
place
uu
jk in ggW
jk,σ in *X as ∞→j . (23)
We remark that
)(=)(),(=)( tdtgtytu for a.e. ][0,. τ∈t . (24)
In virtue of (22), (23), as A satisfies the property kS on σW , we obtain that
)(uAg∈ . Hence, due to (24), as A is the Volterra type operator, for any Xw∈
such that 0=)(tw for a.e. ],[ Tt τ∈ we have
.]),([=]),([,=, ++≤〉〈〉〈 wyAwuAwgwd .
As 1}{ ≥∈ llττ is an arbitrary, we obtain (18).
From (18), due to the functional +→ ]),([ wyAw is convex and lower
semicontinuous on X (hence it is continuous on X ) we obtain that for any
Xw∈ +≤〉〈 ]),([, wyAwd . So, )(yAd ∈ .
The theorem is proved.
In a standard way (see [17]), by using the results of the theorem 1, we can
obtain such proposition.
Corollary 2. Let )()(: ** XXCXA v H∩→ be bounded map of the Volterra
type, that satisfies the property kS on σW . Moreover, let for some 0>c
+∞→
− ++
Xy
yAcyyA )(]),([ (25)
as +∞→Xy . Then for any Ha∈ , *Xf ∈ there exists at least one solution of
the problem (3), that can be obtained by the Faedo-Galerkin method.
Proof. Let us set 2
2
2
=
c
a Hε . We consider Ww∈ :
⎩
⎨
⎧ +′
,=(0)
,0=)(
aw
wJw ε
where )(: *XCXJ v→ be the duality map. Hence cw X ≤ . We define
)()(:ˆ ** XXCXA v H∩→ by the rule: )(=)(ˆ wzAzA + , Xz∈ . Let us set
*=ˆ Xwff ∈′− . If Wz∈ is the solution of the problem
P.O. Kasyanov, V.S. Mel'nik , S. Toscano
ISSN 1681–6048 System Research & Information Technologies, 2009, № 1 128
⎪⎩
⎪
⎨
⎧ ∋+′
,0=(0)
,)(ˆ
z
fzAz
then wzy += is the solution of the problem (3). It is clear that  is a bounded
map of the Volterra type, that satisfies the property kS on W . So, due to the
theorem 1, it is enough to prove the + -coercivity for the map  . This property
follows from such estimates:
≥+−++≥ +++ ]),([]),([]),(ˆ[ wwzAwzwzAzzA
,)(]),([ ++ +−++≥ wzAcwzwzA
cwzz XX −+≥ .
The corollary is proved.
Analyzing the proof of the theorem 1 we can obtain such result.
Corollary 3. Let )()(: ** XXCXA v H∩→ be bounded map of the Volterra
type, that satisfies the property kS on σW , Ha nn ⊂≥0}{ : 0aan → in H as
+∞→n , Wyn ∈ , 1≥n be the corresponding to initial data na solution of the
problem (3). If 0yyn in X , as +∞→n , then Wy∈ is the solution of the
problem (3) with initial data 0a . Moreover, up to a subsequence, 0yyn in
);( HSCW ∩σ .
EXAMPLE
Let us consider the bounded domain nR⊂Ω with rather smooth boundary Ω∂ ,
][0,= TS , )(0;= TQ ×Ω , )(0;= TT ×Ω∂Γ . For R∈ba, we set =],[ ba
[0,1]}|)(1{ ∈−+= ααα ba . Let )(= 1
0 ΩHV be real Sobolev space, )(= 1* Ω−HV
be its dual space, )(= 2 ΩLH , Ha∈ , *Xf ∈ . We consider such problem:
),()],(),,([),( txftxytxy
t
txy
∋∆−∆+
∂
∂ in Q ,
)(=,0)( xaxy in Ω ,
0=),( txy in TΓ . (26)
We consider )()(: ** XXCXA v H∩→ ,
1|)(|),(|{=)( ≤∈⋅∆ ∞ tpSLppyyA a.e. in }S .
where ∆ means the energetic extension in X of Laplacian (see [8] for details),
)(),(=),)(( tptxytxpy ⋅∆⋅∆ for a.e. Qtx ∈),( .
We remark that
.=]),([,=)( 2
XX yyyAyyA ++ (27)
Initial time value problem solutions for evolution inclusions with kS type operators
Системні дослідження та інформаційні технології, 2009, № 1 129
We rewrite the problem (26) to the next one (see [8] for details):
.=(0),)( ayfyAy ∋+′ (28)
The solution of the problem (28) is called the generalized solution of (26).
Due to the corollary 2 and (27), it is enough to check that A satisfies the property
kS on W . Indeed, let yyn in W , ddn in *X , where nnn ypd ∆= ,
)(SLpn ∞∈ , 1|)(| ≤tpn for a.e. St∈ . Then yyn → in Y and up to a
subsequence ppn → weakly star in )(SL∞ , where 1|)(| ≤tp for a.e. St∈ . As
0))(;( 2
2
→−≤Ω∆−∆ − YnLnnn yyHSypyp , then ypyp nn ∆→∆ weakly in
))(;( 2
2 Ω−HSL . Due to the continuous embedding ))(;( 2
2
* Ω⊂ −HSLX we
obtain that )(= yAypd ∈∆ . So, we obtain such statement.
Proposition 1. Under the listed above conditions the problem (26) has at
least one generalized solution Wy∈ .
REFERENCES
1. Aubin J.P., Ekeland I. Applied Nonlinear Analysis, Mir, Moscow, 1988, 512 p.
2. Barbu V. Nonlinear semigroups and differential equations in Banach spaces, Editura
Acad., Bucuresti, 1976, p.
3. Browder F.E. Pseudomonotone operators and nonlinear elliptic boundary value
problems on unbounded domains, Proc. Nat. Acad. Sci., 74 (1977), 2659–2661.
4. Browder F.E., Hess P. Nonlinear mappings of monotone type in Banach spaces, J.
Funct. Anal., 11 (1972), P. 251–294.
5. Carl S., Motreanu D. Extremal solutions of quasilinear parabolic inclusions with
generalized Clarke's gradient, J. Differential Equations. 191 (2003), P. 206–233.
6. Denkowski Z., Migorski S., Papageorgiou N.S. "An Introduction to Nonlinear Analy-
sis", Kluwer Academic Publishers, Boston, Dordrecht, London, 2003, 689 p.
7. Duvaut G., Lions J.L. "Inequalities in Mechanics and in Phisycs, Nauka, Moskow,
1980 (Russian translation), 384 p.
8. Gajewski H., Gr o ger K., Zacharias K. "Nichtlineare Operatorgleichungen und Op-
eratordifferentialgleichungen", Akademie-Verlag, Berlin, 1974, 336 p.
9. Hu S., Papageorgiou N.S. Handbook of Multivalued Analysis, Vol. I: Theory. —
Kluwer Acad. Publ. Dordrecht–Boston–London, 1997, 302 p.
10. Hu S., Papageorgiou N.S. Handbook of Multivalued Analysis. Volume II: Applica-
tions. — Kluwer, Dordrecht, The Netherlands, 2000, 289 p.
11. Kapustyan V.O., Kasyanov P.O., Kogut O.P., On solvabbility for one class of pa-
rameterized operator inclusions, Ukr. Math. Journ., 60 (2008), 1619–1630.
12. Kasyanov P.O., Melnik V.S. Faedo-Galerkin method differential-operator inclusions
in Banach spaces with maps of
0λ
w -pseudomonotone type, Nats. Acad. Sci.
Ukr., Kiev, Inst. Math., Prepr. Part 2, № 1, 2005. — P. 82–105.
13. Kasyanov P.O., Melnik V.S. On solvabbility of differential-operator inclusions and
evolution variation inequalities generated by
0λ
w -pseudomonotone maps type,
Ukr. Math. Bull., 4 (2007), P. 535–581.
14. Kasyanov P.O., Melnik V.S. Toscano. Periodic solutions for nonlinear evolution
equations with
0λ
w -pseudomonotone maps, Nonlinear Oscillations, 9 (2006),
P. 181–206.
P.O. Kasyanov, V.S. Mel'nik , S. Toscano
ISSN 1681–6048 System Research & Information Technologies, 2009, № 1 130
15. Kasyanov P.O., Melnik V.S., Yasinsky V.V. "Evolution Inclusions and Inequalities
in Banach Spaces with −λW pseudomonotone Maps", Naukova dumka, Kyiv,
2007, 309 p.
16. Kasyanov P.O., Melnik V.S. and Valero J. On the method of approximation for evo-
lutionary inclusions of pseudo monotone type, Bulletin of the Australian Mathe-
matical Society, 77 (2008), P. 115–143.
17. Lions J.L. "Quelques methodes de resolution des problemes aux limites non
lineaires", Dunod Gauthier-Villars, Paris, 1969, 588 p.
18. Melnik V.S. Multivariational inequalities and operational inclusions in Banach spaces
with maps of a class ,)( +S Ukr. Mat. Zh., 52 (2000), P. 1513–1523.
19. Melnik V.S. About critical points of some classes multivalued maps, Cybernetics and
Systems Analysis, 1997, № 2, P. 87–98.
20. Melnik V.S. Zgurovsky M.Z. "Nonlinear Analysis and Control of Physical Processes
and Fields", Springer, Berlin, 2004.
21. Melnik V.S. Zgurovsky M.Z. Ky Fan inequality and operational inclusions in Banach
spaces, Cybernetics and Systems Analysis, 2002, № 2, P. 70–85.
22. Melnik V.S. On topological methods in operator inclusions in Banach space theory.
II, Ukr. Math. Journ., 58 (2006), P. 505–521.
23. Naniewicz Z., Panagiotopoulos P.D. "Mathematical Theory of Hemivariational Ine-
qualities and Applications", Marcel Dekker, New York, 1995, 267 p.
24. Perestyuk M.O., Kasyanov P.O., Zadoyanchuk N.V., On Faedo-Galerkin method for
evolution inclusions with
0λ
w -pseudomonotone maps, Memoirs on Differential
Equations and Mathematical Physics, 44 (2008), P. 105–132.
25. Perestyuk N.A., Plotnikov V.A., Samoilenko A.M., Skrypnik N.V. "Impulse differen-
tial equations with multivalued and discontinuous raght-hand side", Institute of
mathematics NAS of Ukraine, Kyiv, 2007, 428 p.
26. Skrypnik I.V. "Methods of investigation of nonlinear elliptic boundary problems",
Nauka, Moscow, 1990, 329 p.
27. Guan Z., Karsatos A.G., Skrypnik I.V. Ranges of densely defined generalized pseu-
domonotone perturbations of maximal monotone operators, J. Differential Equa-
tions, 188 (2003), P. 332–351.
28. Chikrii A.A. "Conflict-controlled Processes", Kluwer, Dordrecht, 1997.
29. Temam R. Infinite-dimentional dynamical systems in mechanics and phisics, New
York, 1988, 648 p.
30. Zadoyanchuk N.V., Kasyanov P.O. Faedo-Galerkin method for second order evolu-
tion inclusions with
0λ
w -pseudomonotone maps, Ukr. Math. Journ., 61 (2009),
P. 153–171.
31. Zgurovsky M.Z., Kasyanov P.O., Melnik V.S., "Differential-Operator Inclusions and
Variation Inequalities in Infinitedimensional Spaces", Naukova dumka, Kyiv,
2008 (in Russian), 464 p.
Received 18.07.2007
From the Editorial Board: the article corresponds completely to submitted manu-
script.
|