Ймовірнісне прогнозування процесів ціноутворення на фондових ринках

Запропоновано два типи математичних моделей для прогнозування процесів ціноутворення на біржі. Ймовірнісна модель у вигляді динамічної мережі Байєса та авторегресійна модель є взаємно доповнюючими, що сприяє підвищенню якості прогнозу і рішень щодо торгових операцій на біржі. Побудовано модель для п...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2009
Hauptverfasser: Бідюк, П.І., Федоров, А.В.
Format: Artikel
Sprache:Ukrainian
Veröffentlicht: Навчально-науковий комплекс "Інститут прикладного системного аналізу" НТУУ "КПІ" МОН та НАН України 2009
Schlagworte:
Online Zugang:https://nasplib.isofts.kiev.ua/handle/123456789/12396
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Zitieren:Ймовірнісне прогнозування процесів ціноутворення на фондових ринках / П.І. Бідюк, А.В. Федоров // Систем. дослідж. та інформ. технології. — 2009. — № 1. — С. 65-73. — Бібліогр.: 11 назв. — укр.

Institution

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Beschreibung
Zusammenfassung:Запропоновано два типи математичних моделей для прогнозування процесів ціноутворення на біржі. Ймовірнісна модель у вигляді динамічної мережі Байєса та авторегресійна модель є взаємно доповнюючими, що сприяє підвищенню якості прогнозу і рішень щодо торгових операцій на біржі. Побудовано модель для прогнозування нестандартних ситуацій. Предложены два типа математических моделей для прогнозирования процессов ценообразования на бирже. Вероятностная модель в виде динамической сети Байеса и авторегрессионная модель взаимно дополняют друг друга, что способствует повышению качества прогноза и решений относительно торговых операций на бирже. Построена модель для прогнозирования нестандартных ситуаций. Two types of mathematical models are proposed to forecast processes of stock price forming. The probabilistic model in the form of the dynamic Bayesian network and the autoregressive model mutually supplement each other, which improves the quality of trading decision making. Also, a model is proposed to forecast nonstandard situations.
ISSN:1681–6048